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FOREWORD

This report describes an investigation conducted by the Hughes

Aircraft Company, Radar Systems Group, El Segundo, California, to test

the use of the geometric moments of an image and of the rotationally invari-

ant functions of these moments for the automatic recognition of aircraft

targets from radar images. The effort consisted of radar image generation

from real data and analysis and computer studies of statistical pattern recog-

nition techniques for the automatic recognition of targets using the geometric

moments of radar images.
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Office of Hughes' Radar Systems Group, for the Office of Naval Research,

Arlington, Virginia, under Contract N00014-79-C-0643.

Dr. George A. loannidis served as the Hughes program manager.

Commander Stacy Holmes followed by Commander Roger Nichols were the

program managers for the Office of Naval Research, Arlington, Virginia.

The analytical tasks for this study were carried out by the program

manager with help from Jon P. Belleville, who also contributed to the devel-

opment of the software and wrote Appendix A.

The major contributor to the development of the software for this

study was Charles P. Dolan who also wrote Appendix B.

This final report is submitted in accordance with the data require-

ments of Exhibit A, dated 20 August 1979, Sequence A02 of the contract
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The author acknowledges the support, and contributions of
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SECTION I
INTRODUCTION AND SUMMARY

In the past, most radar target recognition techniques have

concentrated on the use of one-dimensional target signatures. However, the

development of the Synthetic Aperture Radar (SAR) and the recent develop-

ment of the Inverse Synthetic Aperture (ISAR) technologies have made it pos-

sible to obtain radar images of targets and thus allow the use of two-

dimensional pattern classification schemes for automatic radar target recofg-

nition. One such two-dimensional shape recognition scheme is a technique

known as the method of moments, which has been successfully applied to the

recognition of objects imaged in the visible and infrared spectrum. Recently

under an Office of Naval Research (ONR) sponsored investigation Gonzalez

and .Moret [81 applied the method of moments to the classification of simu-

lated radar images. Their results showed that very good classification per-

formance could be obtained using this technique.

In this investigation sponsored by ONR the Hughes Aircraft Company

studied the application of the geometric moments of an image and rotationally

invariant functions of these moments to the automatic recognition of aircraft

targets from their radar images. The images used in this investigation vere

,einerated by the application of the ISAR technique to turntable radar data and

also data obtained from flying aircraft targets. ,The turntable data had been

,,btained at the RATSCAT facility under the AFT-AL E-3A Non-Cooperative

Data Collection program and consist of X-band measurements against

1, 3 scale models of an F-102, an F-5E, an A-10. an F-I5 and a YF-I o.

Fhe data wvere collected using the stepped frequency technique using a total

2;o 3.4 l Hz frequency steps to synthesize an 870.4 MHz bandwidth. Fo r

the- tull scaLe targtets these Ireasurements corres omd to S-band data it

' - \ 11, aindw idth. The tar ,ets were placed on a ritary platform \vhich

, it 0. 2 degree increments betwveen adj;icent bursts of the 25t Ire(mlitenv

!)S. . L11 ddition to the R ATSCAT data. measurements for a ianeuveri:L

.- i ri cra1t nd .i DC-I durinc take off ,ere also used. The data oi tiie

,- ,r ,btaine'd ,1sim, theo ALCOR radar '.which iscs a linear F-M puls,.

,. n~ :tul NIH,. >and1'vidtr. Fhl' data on the DC-I0 .\-,re' ,,itaintd b\IW n 1 - :

-----



radar operated by the Naval Ocean Systems Center (NOSC) in San Diego. 113 V

stepping the transmitter frequency pulse to pulse at 1. 08 MH/L increments over

a total of 2t) pulses this radar has an effective bandwidth of _176 M11z. The

images of the F-1ll were available from the work of Chen and Andrews [141.
Images for all these aircraft targets were generated using the techniques

described in Section 2.

Using the above data a set of 540 images was formed from tile

RATSCAT data base k1l08 images per target for an F-102, anl F-15, an

Y F-lIo, an F- 5E, and an A-10). Thle first 72 images for each target were

obtained using the lower 128 frequencies covering a bandwidth of 128 MHz

out of a total of 25o MvHz measurement bandwidth. The last 3t images out

of thle total of 108 images per target were obtained using thle upper 128 fre- 4

quencies. The resulting range resolution was 1. 17 meters. The imag.es

wxere formed for a 3-degree rotation of tile target whiich re suLlts in a cross

rang"e resolution of 0. 9)5 mete rs. The images were- forried over the followxingz

set of aspect angles 0-3 degrees, 3-8 deorees......175-178 degrees and

2-35 degrees, 7-10 degrees, 12-15 degrees, ... ,177-180 degrees for the

first set of 128 frequencies and for aspects 0-3 degrees, 5-8 degrees, ....

175-1-78 degrees for the second set of 128 frequencies.

The images of the F- 111 obtained using Hte ALCOR radar ranged

over the following, aspect angles: 0-3 degrees, ';-8 degrees,.. ...

8;-87 degrees and 1-5 degrees, 7-10 dlegrees......7-t 1 )0 degres. All of

the above ima ges ecorres ponded to top views of the targets, i. e. . projections
onl the hiorizon)ttal plane. From the NOSC data set a small numbe r of imlag-es,

10 to p views, and 10 side views were obtained for a DC - 10. I-oxveve r,

!e can se thie target in this case was mioving it was ne cessa ry to uist- the fuLll

111l z rnca1s rLe nt bandwvidthi to pro per ly foc us and align the range si gna -

to res uised in orinng the iage. For classibication tests uniiv thc tenl S ide.

\Ie\5 Ot~ille( Elltis target, were Used. rihese inia-es were- eorfllbjned with

I st enSide vie\\ ilagzes obtained uising .\ rS. nioasuiremenits for thle

'111- ~.-And- 10. inl addition to thle a541Ve clASsifiCajtjon teSts, tHie Lais siliers

O' LIS )rsne with ton %.i(\\ im t~o o the R1 lC; F targetts -I)tailwd1

'Isngthemu2mNlTIZ holdwidthl And . deg~ree l''tdtiin ul tje jj t

F, r tii,s., :eSts 24 imi_:cs petr target, (or thle five -\ A 7 . F't rt



formed over the following set of aspects: 0.8-7 degrees, 3.8-10 degrees,

6.8-13 degrees, ... , 33.8-40 degrees and 140.8-147 degrees, 143.8-
150 degrees .... , 173.8-180 degrees. The images used in this study are

given ;n Table 1.

In addition to the generation of the above images, software was

developed for image processing such as backaround noise computation, adap-

tive threshold adjustment, edge enhancement and edge detection. Software

was also developed for the conmoutatitn ft all central monents of orders two

to seven and f all orthogonal moment invariant functions using fiments ,.f

orders two to seven. As described in Section III, the total number ,f required

noments ,s 33 and is also equal to the total number of invariants. Also three

general alcebraic invariants were computed as described in Section III.

TABLE 1. RADAR IMAGES OF AIRCRAFT TARGETS
GENERATED FOR THIS STUDY

I Frequency
Data View Aspects Steps

RATSCAT Plan 0- 3), 5-8 , 17-.-178 °  0 to 128

RATSC:\T Plan 2-5 '. 7-10 ..... ... 177-180' 0 to 128

R ATS-cA r Plan 0-3 ° , 5-8 ,  1-5-178 1 " to _2mj

UATSCAr Plan 0. 8- O. 3. 8- 100, o. 8 - 1 3". 0 to ,

I'Ar.-\ sCA T Plan 140. 8- 147 , 14. 8-150 ..... ... 0 to) 2,)
17 3. 8- 180"('

A-10, F-SiC Profiles I8. ° to 120, -1i.2 to -' 0 toI 2_e.
12 1o . 2''

.. COR 'F-Ill) Plan 0-_5 , 2- , 5-.......,7-',J . _ '
re s,,to n

' PC DC-10) f rotiles 10 nose aspects 0 to " ,

F sC ( r-I r F 1 Plan i ,r_. i, as: cts I Y F - A 1

II

,I . [ < .\ [ - r:£, - {2 !' ', K I , " t' l , . - 0

,,



Moments and invariants were computed fromn both the imiage and thle edige

detected image (contour image) and classification tests were performed usi

feature vectors constructed from the moments and feature vectors conlstructedl

froni the invariants. In addition to feature vectors comiputed fruin the gteomeotr iC

momnents and invariants features obtained by collapsing the image intensities

along two orthogonal axes (parallel and norm-ral to the fuselage orientation) as

described in Section IV weore tested.

As seen in the results frOM thle classification tests presented in

Sections VI and VII the best performiance (84 to '47 percent correct) %,as

observed for feature vectors using the central moments of the ililace anO(

also for combinations Of rnoiiients from the image and thle Qdige detected

imao e. The results are encouraging, and suggest that the geometric momeonts

mnay prove to be impo rtant features for the application of statistical pattern

recognition techniques to the identification of aire raf .t targets frmm radar

imiages. However, because a Limited set of imnagino geomnetries (only plan

view~s corres ponding to projections on the horizontal planle for zero roll and

pro.)files co rres ponding to projections on the vertical planie) wvas used in this

study 'the performance of the techniques as a function of roll and pitch angles

wvas not investigated. Further more it was assumned that the imraging plane

,was known. The determination of the target view presented by the imnage is

au ininortanit problem that will be addressed in follo\\-on %\ ork in thit, o roi.

In addition to the aboveO Classification results lbtatnocl Liuringz thi.-

S tudy a te chniqu e was also (level ope d which usces inv a iian t mioment funIc t i n s.

fr thle ConI JU tation o i the c ross range scale iii IS AR i i gsof ta r ct 4 \h so

rotationi raite is not kno-wn a priori.

Sect ion 11 c ota ins a (itscusst(on )f thle ISARP iacIn and i iiia-Ce or cc LS61i

.11--r thills used Mn thin Stu(iv. Sec,,tion III is a (liscussiotii .4 thet _e,,,motr~c

I 1 1 1 i nt S and 1 ivai r : ait f UO1C ti nI S 4 1VS011 1'1 th s Ine t 10d te ii ue inC11 thek C 11itt -

i:o)i i t!ue tarcet As )cct inti thet CoWIiitatln If theo rs rnICe scaletat ,I

.!i11 tC. I-s fl(i 5'( n1 'Sectt'e. IV and Sek t1i0 V Crtlll .1 dk~- io~l;t:'nI

I h .: e Ised ?) tln,: 1!ve, Utiot ii '' I:- \Rt i-, t"\' t no~kie ,,I

r'di~i the i~ii *l1tt%. 1 thel Lteatur* 'V. tins". L'k ict 'it

I,*-t~lt.:mn(l :I Sck t:nr L11 a ii'i theu.[ l n l s ' at-c, .11 i t o VI.



on the computation of the invariant functions and a brief discussion of thc 'A

softvare used in this study are found in Appendices A and B, respectively.

4
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SectLon II
INVERSE SAR IMAGING BY FREQUENCY STEPPING

The most common radar imaging technique today is the SAR method

used primarily for ground mapping by airborne radars. The method

employs high range resolution waveforms and takes advantage of the linear

translational motion of the airborne antenna to generate a synthetic long

array with an effective azimuth beamwidth several times smaller than the

beamwidth of the radar antenna. Thus radar images of the ground and of

,,round targets are generated.

When the radar target is moving (thus causing a change in target

aspoct) a similar technique called ISAR can be used to image targets in

motion. The method takes advantage of the relative doppler shift of the sig-

nals returned from the various scatters on the target (as a result of the tar-

get's rotational motion) to obtain the scatterers cross range locations. Either

a single xvideband pulse waveform or a burst of N narrow band pulses stepped

in frequency pulse to pulse over a large bandwidth can be used to obtain the

range profile of the target. For the stepped frequency waveform, a synthetic

high resolution range profile is obtained by Fourier transforming the target

echoes per frequency burst. The time history of the range profiles for a tar-

,et with a changing aspect contains doppler frequencies that are directly

related to the target scatterrs cross range locations. Thus the cross range

dimension at each range cell of a rotating tar,,et is obtained by Fourier trans-

:,rming the echo history of the range cell. In this vav range and cross

ranue data are mapped into a target image.

1 R\NGE-DOPLR IMAGING OF '.7.TARGETS CN A ROTARY PLATCRN1

Ridar imnauin- of tar2 etz on a iotar% platform with a steppei

:r,. t',, n cv radar svste m n i-. ')riefLv described here. rli orocessin u alz,,-

: r the :fornation , adar i miiage of the tar2,t are deriv'd 5%" repre-

- :.' he tar_'t t a - l,>l ctin (,f many pint sc- terers as ,eserp: ,t v
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Chen and Andrews (l), Walker (2) and Wehner (3). Even though the analysis

presented here follows this point scatterer model, the resulting imaging

algorithms are also valid for targets that consist of one large continuous

surface with dimensions much larger than the radar wavelength, as it folhiws

from the work of R. M. Lewis (4) who by the use of physical optics formulas,

found the same imaging algorithms as those obtained by the point scatterer

model.

For the geometry of Figure 1, assume that the target consists of

a large number of point scatterers. After coherent demodulation the received

radar echo as a function of transmitter frequency f (wave number k 2'rf/'c)

and target aspect angle 6 is given by

E A j2k • R " J2k - r T
U(f, ) - e e P(r; 0) e ds(r) (1)

0 S

where p(r; 0, is the complex target reflectivity at point r on the taruet sur-

face when the aspect angle is 0, k is a vector pointing from the radar

towards the center of the target and its magnitude is equal to the radar wave

number given by

Ilk ll -(2)

E is the amplitude of the transmitted pulse, A is the effective antenna
o e

aperture of the radar, R is the tarcet ranue, and the surface inte-zral is0

,over the illuminated target surface S 1 . Expressing the vectors k and r of

Equat: ,n ( 1) in terms ,Kf the jodv c,),rdinates X, Y (soe Fi,-ure 1)

2k r xp , (3)



where:

p (4rf/c) cos 0, p = 4rf/c) sin 6

x = r coso and y =r sin a

SubStitUting fromn Equation (3) into (1),

Utp PP-) =(-70e); e o/ P(xy;e0) e'x dxp)cdy (4)

which show,,s that the measured signal is a sample of the tw,%o dimensional

Fourier transform of the target's reflectivity projected onto the horizontal

plane and modulated by the linear phase term

jp - R
e

When in the measurement setup of Fig-ure I pulse-to-pulse frequency

steppinc- is used over a bandwidth (~f mx- f mi), the resulting measurements

correspond to samples of U (pXV pY ) over a region D in pxPV)space which

is a section of a ring betw,,een two circles w,.ith radii p, and p, as shown in

F au re 2 . rhe~ corresoondingu measurement transfer function is

1 (p, p 1,px = p cos P- p psin b (5a)

-.Pe e .A f[ p %p.) 0 , otherwise. (;b)

:1r A0e is zsmall and (p, p, 11/2 ( p, p1 , the Fourier tran sform of

tl§As n-ea siir ement tran sfer function is 2 iven )

(P~~P 9
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Figure 1. Imaging of target on a turntable.
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where X is the range axis and Y is the cross range axis, P2 + 2

and Ap =p, - pl. Therefore, the reconstructed reflectivity ^(x, y) and

the actual reflectivity profile p(x, v) are related by the convolution

integral

~(x, Y) = ~dx" dyh (x - x', y - y') p (x', y (7

From Equations (o) and (7), the resulting range resolution is

Ax =p 2-= 2T Trf c. (8)
T 4f - f (f max f mmn

c max min

while the cross range resolution is given by

gAe 2,1e

where \is the mean radar wavelength i-,iven by

max in

From Equations (4) and (3a, b), the reconstructed reftectivity

profile, w,,hich is the radar tarc et ima.~e, is piven by

A ~ ~ A pPcoe jps
( x, %-) =K 0 / de pdp U (p, 9) eJX oe Jpsn i)

2 P1

h.1ere Kis a constant that depends on rang-e, effective antenna aperture,

%,avelen,.th, and transmitter power. For small values of -!,, the above

nte-,ral can !)e approximated ~

p.v=K, / / pdIp 1 (P. e Cp-i~



For numerical computations,

p p1 +kap p p2 = p, t (N-1) Ap

i5E AO 6= (M-1~

x n~x y y= nizy

and choose Ax, Ay so that

Ap Ax N T p1 0AV -2 ,

Using the above,

ejpx ejp1 flAX 1j (2rrN) kn

e ipeY ej (-' T /,) i me J(Z T/MN) (Ap/p 1 ) i nk ejp IyAG/0

ej(2ir/%M)im I +1 - -P m -jp 1 y 2

Substitut-.nz from above in Equation (11) and replacing_ the inteirals iby

summations, the magnitude of -p(x, y) is given by

2 2 N-i %-

~dnx, ~vi K - - -2T/N)kn TL~r/M)imf

P P ik i) Uj(hi ( T k 2r M in (

2 Tr 1 )k ~ i

I< 0 j- ()



In most radar image applications, only the first summation is used. The

second summation which is multiplied by the very small factor

where m is the cross range dimension index (y m r Av) is a small correc-

tion term that accounts for the error introduceU! by the approximations used

in the polar to rectangular conversion and is usually neglected. The above

polar -to- rectangular conversion also imposes a restriction on the maximumn

size of the angular sector AG in the measurement space that can be

processed coherently to form a radar image. For large values of -M), the

polar -to -rectangular conversion introduces an error caused by scatterer

motion through resolution cells. This problem imposes the following

resolution limitations [51 when Equation (12) is used

AC R > \~ L (13)

ICR = rosnc e resolution

=radar w ,avelength.

i ;Uis Iii-.tation can :e avolied by polar format processinu: usin,_ Eq,-a-

t ,) JOIu ) at tie e.,c:)ense ot a c omputatwnall% v tneffl C ~ent al,_) r thin.

Iht, s,.'pncri frenquency Wchticqut -\\as iscd 1 fori iniaes , 't ive

ai r,--ra* o ,)icLS. ih aLa is~ed 'Or these ima,-- %\''ert,>1et. it

PA -.- ('AC t X~- )a: I_,- . i -s s : c i Ie ni o d(1S 'f a F- 10 2, 1-n W-iK

F- ~ ~ ; andan A-- 11). .- t tat 0, 2).4 Xl,1z :e~c in



were used. The targets were placed on a rotary platform that rotated at

0.2 degree increments. To avoid range aliasing the frequency step size

must be less than (c/4L) where L is the target length. To avoid cross

range aliasing the angular increment must be less than (X/4D), where X is

the radar wavelength and D is the cross range target dimension. In the RAT-

SCAT measurements the frequency step was adequate to avoid range aliasing,

but the 0. 2 degree angular increment was somewhat high for aspect angles

near the broadside of the target. By introducing a human observer in many

of the cases where cross range aliasing occurred for aspect aniles other

than head-on-broadside, the images were corrected when the aliased part

could be resolved in the range dimension. The five scaled aircraft models

were mounted both horizontally and vertically on the rotary platform so that

both yaw and pitch angle rotation could be simulated. The measurements

obtained when the targets were horizontally mounted on the platform gave

plan (top) view Lmages of the targets; examples are shown in Figures 3

through 8. The vertical mounting resulted in profile (side) view inaes as

shown in Figures 9 and 10. For most of the classdication tests descr0dked

below, the top view images of the targets were used. One test, however,

was oerformed with profiles of the F- -E, the A-10 and of a DC- 10 durin u

take off: stepped frequency mneasurenents provided by the Naval Ocean

Systems Center NOSC) in San Diego wk're used. The technique used to

image that target is described below.

2. 2 RANGE-DOPPLER IMAGING OF MOVING TARGETS

When the target is movinu. in addition to the chan-e in target aspect,

the range between the radar and the target is also chanin'_. As a result of

such ranue changes during formation of the radar irmage the imaes appear

to be out of focus. The sinal orocessi_ ju technique used to correct for tis

det-octisfA ,.tfcct is known as iuttoou~1uu tf it relies only , th)n 'v,'toy d

radar siu:nal to accomplish this task. Althouh the aUtOfocusinLu u:,lem :or

th. s'(:p._,d :requency waveforms, in orinclolc. is similar to tht.ot, f '.s n

.)r(.[, :or tie sin_e oid.a:ld ouise x.vave.orm. iin ti, e - no fr,.oe cv

cas crr c.o,n must alsm be introduced to acci,nt :or '!)a.-,, err:,r

14
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caused by the changing target range during transmission of a single N

frequency pulse burst.

As shown in Fi,.ure 11 when the iniaging radar employs pulse-to-

pulse frequency stepping to synthesize a high range resolution target

profile, the received target echo at each frequency can be considered as a

frequency sample of the Fourier transform F(fk, 0i) of the target's range

response multiplied by quadratic and linear phase error terms introduced

by the target rang-e R and target radial velocity R. As seen in Figure 11,
0

the received signal as a function of frequency f1 and aspect anule 8is ,iven

by

U (f , Oi0 F(f , 0 i exp -j- Ro - o Tt ) i

ex _j (R. RAT~k] 4-'f' HTll:
k '' v " [ -I -tk0 ]

exp - (15)

wnere R is the targaet ran,,e at aspect 0 when frequency f is transmitted,
0 f 0

is the mean radar wavelength, -If is the frequency step size, %T is

the pulse repetition interval ( PRI) between transmissions at adjacent fre -

quencies, and T z N • AT is the burst time. The effect of the linear phase

errors introduced !)v the first three complex exponentials in Equation (15)

is a translation t)f the rcsultin, radar ima,_,t- in the ima e plane and does not

affect the ima 2e quaiity. But the last tk%) coMplex exponential terms in

-qLat in (1 5 are quadratic fun ct nn s ,f the :-l;ce and k ani have a

dofocusin,, and lurrin, effec t ;In th, resultin,_, radar ina ce. Autofockosin' u

aiorithms atteipt to cz)rr,,ct the effect i these two quadratic phase, ,rrir

ter , le aut111S cus n, ai,_,,)rlthn s usec :n F-urt 12 to rrct 1-r the
,. :, iht, non;;. e' < :"x n,1vin, I e oih.ttt ,' , i. iKn,n a. r.nn , ,g,*u

m ent vhiic toe rr ectotn for the quadratic error i:t')rVin c in ,.%-ua-

t. > *.. .: .n a ' i rat:c ils t, :i' la t>O 10(1 n n n v (c i irr

re i, tiir:' . i . 2 0 s rst a:i ' u . r er ra, i ,r i i,: ;), ta :ln the ic'

I/
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RECEIVED SIGNAL

U IfE. 9j) = F ( fk 6 .EXP [I 3 Rol. EXP[-4 (T.R) iJ

E XP f 44 4RT) kjEF..±L+ TR k]

Ex [ p -tf AT* A) It2 ]

Figure 11. ISAR imaging of target by radar using pulse to Pulse frequency stepping.

k
U k ----- *FREQUENCY

RANGE ALIGNMENT* * * *QUADRATIC PHASE I.E. CORRECTION FOR* COMPENSATIONTHQUDAIPAS
I.E. CORRECTION FOR THETHQUDAIPAS

. . . . . . . . . QUADRATIC PHASE ERROR EXP 4 - :f A )

EXP[ I f.jAT.-A) k 2

ASPECT

CORRECT FOR FRESNELCETRIRAG2 0 FOURIER REGi'ON TERM IF CENTEROIN RANGETRANSFORMRAG

MAGNITUDE VINO) I E CORRECT
R D2 FOR THE LINEAR PHASE

WVHERE 0 IS TARGET
CROSS RANGE DIMENSION[ TARGET

IMAGE

Fqgure 12. Signal processing functions needed in formation of ISAR images using stepped freauency technique.
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range resolution profile. A signal processing block for correction of phase

errors introduced by Fresnel region terms is also shown in Figure 12.

This correction accounts for a quadratic phase error introduced by the

assumption that the radar signals are plane waves rather than spherical

waves and is only important at relatively short ranges.

When autofocusing is used for range alignment, it is usually assumed

that the target's rotational motion is relatively slow in comparison to the

N-pulse burst time, so that two adjacent range signatures are approximately

equal. With this assumption, the problem of range alignment can be

expressed as an optimization problem, where an unknown linear phase func-

tion of the form exp [-j (Zrfkdi + *.)] is sought so that the function

1?

-j(2Trf d + .)j
J -- . U(fk , 8.) " U(fk ' (

i- I)  e i

k=O

is minimized.
Then the resulting value of di is an estimate of the (range displace-

ment) time delay between the two range profiles at aspect angles 0. and 8.1 >1I'
and I. is a phase difference between the two profiles. In general depending

on the soectral characteristics of the signal, filters H1 (f) and H (f) are intro-

duced and the resulting criterion function becomes

N-I

1- 1 E k' U ) - 1, U fk E).1 exp _( 2 -7f kd. -ji

0 T)

hin ,. zat: :i i Equat,)n (17) with re s Dect tu d. and 0 ,,cwe s that t h;,
, 't v :: ,ah ,. *I i' 'ei v d .s th e v lue that a ,li.c

J_'>rf, d.
Q \w(f .Uf, eI:f, )e 0I 1

0

I j!



where:

W(fk) Hl1(fk) H,2(f I) (9

is a frequency weighting that depends on the spectral characteristics of the

signal and interference. For example when W(fk) = 1.0 then using Parseval's

theorem, it can be easily shown that the maximum value of Q is equal to the

square of the maximum cross correlation peak between the two range profiles.

Once estimates for the delays d.'s and phase angles 4 .'s are obtained,

then assuming that the range rate R is approximately constant during a burst

period a quadratic phase compensation can be introduced to account for range

changes during one range signature time.

The above processing technique was used to generate inverse SAR

images of a DC-10 during take off. The data were obtained by an S-band

radar operated by NOSC in San Diego, CA. By stepping the transmitted

frequency pulse to pulse at I MHz increments over a total bandwidth of

256 MHz, this radar obtains a synthetic high range resolution profile every

0.05 second. A total of 64 range profiles are used to form an image.

Depending on the apparent target rotation tyaw or pitch) plan (top) or pro-

file (side) view images of the target are obtained. Figure 13 is an exaniple

of the plan [top) and of the side view images for the above DC-10 generated

usint- the processing described in Figure 12. Ten side view -na-es (f this

target, 10 side view images of an F-.5E and 10 images of an A-I),

xrere ,used for classification tests using the method of monments. The

results are presented in Section VI.

.3 IMAGE PREPROCESSING FOR AUTOMATIC TARGET RECO(NITION

Before the radar images generated by the coherent processin,= ,f the.

radar returns as described in Figure 12 are ,resented to) the classifer,

an xdat)tive thresholdinu schenme is user to rk-:move noise in the irna-es.

Faurthe rmdre. the ,d,- detection scheme I) 7.ure 14 Is u L,, C ,e tie rate,

itniaie :)oindaries . As seen in that ficure tl1 backtrotind oi-t Lv, ,i th,.

!im ji,' s <(,mk)ted. and a thr,-hold (orr.- ,,Ld'in to, 4.4 i ,V, '1e

S. -



aDC-10 TOP VIEWV

4p



RADAR

ETAGE

Fj

If Fi <T 1  
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Ell " E -GE DETECTE D IMAGE

Figure 14. Processing for edge detection.

background noise level is used. Then the resulting image is used to obtain

the image edges as shown in Figure 14. As seen the dynamic range

the thresholded image intensity is reduced using the transform~ation

A i] = log (F ij+1) where F ij is the original image intensity. The resulting

inage intensity field A.. is then convolved with an edge detection mask M

to generate the field E.. N1" A... The field E.. is thresholded using an
13 ij Ij

adaptive threshold set at 6 dB above the estimated background noise level

in P:j... The computation of the background noise levels used in computing
1J

the adaptive thresholds is obtained by averaging all intensities in the

observe.d image fields that are less than one fifth the maximum observed

intensity. Examples of radar images before thresholding, after thresholding

and after edge detection are shown in Figures 15 through 18.

All the aircraft targets used in this study are shown in Figure 19.

,'8



a. Original
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a. Original
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a. F-102 (LENGTH =20.8M, WING SPAN 11.6M)

Figure~ 19. Target aircraft (Sheet I of 4)



A

L2

b. Northrop F-51E (length 14.73 meters, wing span 8.128 meters)

c. General dynamics F-16A (length 14.17 meters. wing span =10 meters)

Figure 19. Target aircraft (Sheet 2 of 4)



d. McDonnell Douglas F-15 (length -19.4 meters, wing span =13 meters)

-- ----- -----

e. Fairchild Republic A- 1OA (length 16.2M, wing span 17.5M)

Figure 19. Target aircraft (Sheet 3 of 4)



f. General Dynamics FB-1 1iA

a............-t

g. McDonnell Douglas DIC.1

F gure 19. Target aircraft Slieet 4 of 41



Section III
RADAR IMAGE CLASSIFICATION USING 4

THE METHOD OF MOMENTS

One of the more difficult problems in the design of a recognition A

system for pictorial patterns is the selection of a set of appropriate numeri-

cal attributes or features to be extracted from the object of interest for j
classification. One set of features that has been applied successfully to the

recognition of optical pictures is the set of geometric moments of the image

and invariant functions of these moments [o], [7], []. The geometric

moments and invariant moment functions and their use in classifying radar

images of targets are detailed in this section.

3. 1 CEOMETRIC MOMENTS AND INVARLANT MOMENT FUNCTIONS OF
IMAGES

The non central (p - q)th order moments of an NxM rectangular image

field ftxi, v. are defined by

N M

pq q Nnpq N-ZT fix i, .vj xi yjq (20)

where (x i , v.A are the coordinates of the (i, j) cell and fx., v.i is the tntenlsit\• .i " .1

function.

'The central moments for the same rectani,ular imaLe field are

defined y

= X E E fxi, " .- -xT q 21)SPq -, , "1 ".'

ijz :,=



whe re

n
n 10 (22)
no 0

and

nf

0O1n -
(23)no 0

The normalized central moments are defined by t

mr-
f*Lpq = m pq

i 0 0

and are invariant with respect to changes in the image intensity. Central

moments as used in this discussion are the normalized central moments

detined above.

From Equation (21), the central moments are seen to be invariant

,under translation but varv under rotations of the image. Usinq thti theory of

aL,-,ebraic invariants Huf 7] has shown that alcebraic relations exist among

the central moments of an imace that are invariant under translation and

rotation see also Appendix A).

Fhese invariant moment functions are of the form

P ll i'q 1 n 

and are invariant inder co-ordinate transformations. In particular a set o

i2tvaria its knovn as orthoional invariants are ftnctions v.1 hose valule doe s



iot change under a rotation of co-ordinates, i. e. ithey are invariant with '

respect to the ortioLonal transformation

x I b .4 )

), - s6 sn) x(4

for any anLjle E, i. e. (2) (Z C )4

p(n n. .. .IU, ). n0lq p,u, -",.Ip qlp q

where the mpiqi are computed usin, the imnace intensity field fix, vi and the

are computed from f(x', v I. Wfhen hese IunCtil-.s are invariant ander

rotations and/or reflections about one of the coordinate axes they are called

absolute orthogonal invariants. In what follows, by 'invariants' w, refer to

these absolute orthogonal invariants.

Using the theorv of algebraic iavariantsI 11u LT7] has shown that the

number of invariants involving: moments from second to nth order in - p - q)

are the same as the number of moments with orders 2 to i i %hich is

(n 4) in - 1)

in ,,optical and infrared ima,,e recognition systems )nl%- invariant iinctiions

,)tained fr,onm 'he second and thiri )rder ii oflents are usually , . F r

:hese moments, there are six absoLite orthogonal invariants ,iven hv

P - t20 " '02 - r

PI I -;22 2-
-' UP2 0 - 02 4'I ] '"

r

92I. 7 - 3,, ' -€. - 2-
31 12 21 03

r

/ p



1 )2 )2

P3= -L(6 30 ,1 )'2 + ("2 1 " 0 3 2 ] (28)
r

12 2
(3= I '2 1 A30 -3- 12 )1(+vN330 (ti 30 A 12 3  ( 2 1 + )20

(29)4

)22

- 1 [ )2 0 - 0 ) 3 f/0 1 2 - (W 2 1A
r

(30)
-- #11(A3 0 /12) (A2 1 +1.03 ) ]

and one skew" orthogonal invariant given by

S[(4?2 _2
= [(3 2 1 -h 3 1" 3 0 - 1291Y 3 0 - 123 -3A I

r

(31)
)2

-( 30 3 4 1 2 )( L 2 1  L 0 3 ) 3(4 3 0 - 12 2 1 ,'-1 0 3) H].

Above PI P 2..... P b have been normalized by dividing by P0 = r to cancel

uniform scale changes. Because the quality of most radar images is not

good compared to optical or FLIR images, the number of moments and

invariants used in most of the classification tests of radar images described

in this report is muc larger than six. In particular, all invariant functions

involving central moments up to order n = 7 i. e. , a total of 33) were computed

using the formulas presented in Appendix ,A. In the classification tests, Ill

of the above irvariants as well as smaller subsets of thesp invariants were

use'd to construct feature vectors. Classification results fron these- tests

ar ,, )rt iete(. in ectt .n VI.

AltliU ; t:' i n,,me nt functions in Equatin s (25) t, (3l) a), %-Q an,i

those presentpd in \ppendix N are invariant under orthoional transform-lations,

tl'ev ars not inv:a rlant inde r upneral a7Iehraic transformations. In )a rti, ila r

it the apoarent tari2et rotation rite is not stitnated, tlh# , ross ran L'f -hin n-

sion of an in.-'rse -\. ii-aze m-ay not he properl\ scaled. T-It( rrestilt is a

.' ,-.. r~,.u..: oir -- riant chan_'t- i r r:I

-±tU
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distorted image, which destroys the invariance of the above moment

functions. A technique for estimating the cross range scale of inverse SAR

images using orthogonal invariant moment functions is discussed in

Section 3. 2. This technique has been tested on the turntable data but has not

been proven yet on real moving target data.

To overcome this scaling problem, Hughes investigated the use of a

set of moment functions that are invariant under general linear transformations

provided that the determinant of the transformation matrix is unity, i.

(x) (a b) (7)
V' c d N '

where:

A= (ad-bc) = 1.

Such a set exists, and for the second and third order moments Hu , gives

the following invariant moment functions:

2
= A2 A20 - P (32)

2 2 2

11/ -)2 _ A2 ) ( t1 - JA 2  11 33)

-'030 2 -12 o321 - 112 12 30 - 21

2)
I 2 = 0 2 P 1 2P 3 0  " 21 - 11( 'UO 30 - 12P21

(i4)

- 420 1 03"24 - 1112

2 3 2
'3 - '"3 '2'3 - " U 3 1 ll'2 " '103 212 0 ' 2 l 2 /'220

I 22

O'3H3fl frt2ly 1 €2 " - t 1 ' 1 2 12 20 .

33A

' t l 'I2 II ) * 2 M ,)a ,2 " 3 ) 3q

41

P '),1 30 1



These can be normalized to generate a set of general algebraic

invariants aiven by

rq = 1
0

S= /1 (36)

2
12 = 2I 0  (37)

c3 = 3/1 03 (38)

Using the theory of algebraic invariants a much larger set of -eneral

algebraic invariants can be derived. However in this investigation the feature

vectors that were considered consist only of the above three invariant func-

tions as well as the squares and by two products of these invariants as des-

cribed in Sect'on VI. In general, monents and invariants were corntuted from

both the intensity modulated image and from the edge detected imnage obtained

by the image preprocessing described in Section 2. 3.

3.2 COMPUTATION OF TARGET ASPECT AND CROSS RANGE SCALING
USING THE GEOMETRIC MOMENTS

If the rotitionallv invariant moment functions are ,ised as features

for classific-ttion, the target orientation in the imaging plane does not have to

be comnuted. Howe,-er, if that orientation is desired so that other recou-

nition toe -niq uc . Wviic need that iniornatlon. ( ,n also be ,ppleo. the

k t, ntr 1 , 11-111 k t "t n o( used to _ive tiie tar g et orientation a,- iown in Fi,-

ure 2U. it is shuxwn in the fLure that by fitting an ellipse to the a,,rcraft

l1 u,_u, tiu. ,)rli tL:!totl1 Of tile najor ax s. \viiich usually colnoid,-, v1,, thte

S .- a . c tn Iw :)tanud frcm (see !it: [71)

10 - L
~ ( 3l
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ELLIPSE FITTED TO THE IMAGEI

MAJOR AXIS OF
THE ELLIPSEj

2wg 0

TARGET AXIS 
''t,4

Figure 20.. Computation of fuselage orientation b,, fitting ellipse to target image.

i this study the performance of the above formula in estilnatincz tile

tarLget aspect ancole ,vas tested usinc2 the images of the five RAYrSCA 1' tarczet-s.

Thle results are presented in Figure 21 in the form of a hiStocram that plots

freauencv of ocy urrence versus error inl urientation an-lue estimnate. A total

of 3o images per target coverinu aspect anaies from 0 decree (no-u on' to

180 dec.rees (tail) w.ere used in cons tru~ inciI tile plot inl FicOUre 21.

A priblern that often arises in pr0Ce':-inc inverse: SA P uISA R 'mc

tshe (letermination of the scale factutr to !)L: ie in conve.r tinu relative

ran,,, e !oppler bin nurniber 5 iltI) aI)oiutucr o ranic ul t - . ort

ra)n,! e -!i-rens~on such a szcale factor i eachlv availal)le from ti,,( rd~ar

. rOu") cetion Thu~v\e.r -s~wic-0 : t~')r

44)



ed
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4, 1 0.20

BIAS

C

4/
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29 23 17 11 5 0 5 11 17 23 29 35

E RRO R. DEG REES

Figure 21. Aspect angle error distribution over all aspects for five RATSCAT targets.
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)I~~t.fla the kr)~ssrn~ sc,,iIe f"( tot- d. the, i .taitiof rite, of- l
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:~r-ri~I. ~e Lnk at )f 4~0041 Metho0d:r If1Jlte0 tiu !e
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If succes.sive ISAR irnaes of a rotatino radar targeQt ar in tppnd on

a plane so that the x-kcoordinate is along the range direction (i. c., the radial

direction from the radar to the target) and the v -coordinte is a tn th,

cross range direction, as shown in Figure 22, then the above Invariant

mlomn ent functions can be used to CL)rnpuLe the ratio of the cross r; ne to ra tii

cell size.

Denotinc this ratio by r, i.e.

DY (41)
DX

where DY is the cross range cell size and DX is the rane cell izo the

orthoconal in\'criant moment functions are shown to be polynoiiis in r.

For example. the invariant p of Equation (Z5) can be expressed as

Po (r) r L (42)

Y A

0 0

0 Z
< It

uQ

RANGE RANGE x

t h t o  
b. t t + i

F quo. 22. Two ,IccessIve ISAR ,maqes totated wvith respect to each othet hv joqie m i
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if 20 and kO, are computed by assuming that the cross range cell size DY

is equal to the range cell size DX. Similarly from Equation (2)

' 4 2 2 2Pl.(r) = 2o r + -t11 r" + ? (I I -) 402) O r + 4 O (43)
I (43)

If the above normalized central moments from tv\o successive inverst-

SAR images as shown in Figure 2Z are computed by assuming that the range

and cross rangze cell sizes are equal and if the moment from the, first irnagc

are denoted b\ pq and those fron, the second by L'q and the corre spondine,
I pq pq

invariants are denoted by pi and p' then for the corret t value of the ratio r
IT

Pi (r) = p'. (r) (44)

for all i. Thus, Equation (44) can be used to obtain the correct value of the

cross ralige scale factor. To overcome the effects of noist!, usually several

invariant moment functions have to be A-s ed and an average value of the

resulting values of r is computed as described below in a numerical examplc.

Application of EquatLon (44) to successive ISAR ima'ecs as shov'n

in Foure 22 ,ires

(4()- " o2) r 4 - 2 (45)

and1

ko2 102\ r 4  (2 .2 r2oKr)U 0 I 1 2 -20VII 0 r) O2

q 11 - 2 JC2 I 1) r (t2I) ) Ia t,)

:ict: fl ( i,,) ,df ')n r) . ,iZll)M t'(1LI t he rll'I tL~l tIA' tart thua

-: 2

' 1 i 2 .,



is an absolute alzebraic invariant (scee Hlu [7]), i. e. , it is invariant under

both rotations and nonuniform scale changes if the determinant of the trans -

formation is unity. Using this result. Equation (46) gives

SA 2 - r 2- t 0 - o) 0 (47)

Substitution from Equation (45) into the term

-02 Or of equation 13-}8)

gives

0 + 102 2 1  - JA'I)r 2  0

As mentioned earlier in the absence of noise, Equations (45) and (4) must

have at least one common positive root. Usually when noise in prese-t. thls

is not true and the two roots oiven by

= / (40 )

(from Equat'*n (4;)) and

11, i-.cuati,,n -- )) are n,,t equal .r eve.n real. In tev '. , itr

01 . * . r t. , . t\ t I t> :. " .r t A ", '

e; 2 t., ;ta.o.in .nvar:ant 2 ,n .v p - p,). r t . ','!)

[(P~ < I.L o

I M b kJ



In combining these roots, only the positive ones are considered. To live

equal weight to those with r < I as to those with r > 1, the geometric rather

than the algebraic mean was used; i. e.

r = (rI r? r 3)/ (52)

which is equivalent to averaging of the logarithm of the above roots.

The above method was used to compute the ratio of the rance to ,ro

ranrge scale factor of a set of ISAR images obtained from multitrequenc

step S-band data f3r a scaled model of the F-SE. The dtai were recorded

at the RATSCAT facility where the tarLet was placed on a turntable arnd

slowly rotated at a known rate. Usinc Equation (40) and the known rotation

rate, the crvss rantge cell size for the images was cot erDctL'Ci. The ratio) ,ir th,-

cell size zo the radar range resolution cell for the images was equal to 0. I,.

Smoothed estimates of the above ratio using successive images of the

rotating target are given in Table 2. These iniages were formed for tar-

get aspects ranging from 180 degrees (tail aspect) to 12t) degrees. The target

rotation between successive imaiaes was 3 degrees. From the results in this

table, the cross range scale factor is estimated to within a 28 percent acco-

racy. This improvement is significant when compared to tht previolis corn-

plete lac: f any knowledge of the ranue cell sizt, diii,,t-nsiojn. Ihc

acciir:icv to within the cross ranue scale tactkir is sstimtt,, usu t}is ths -

,iqt:, -:ill nrobablv 5e adeqUate t(, alll, the iise of mome,nts otr the awt.,,n ,tc

clas;f:. atin if aircraft tar,et.,. I,,.ever, nl, te.sts %,ere :)erfori.e1 in

'Ki~-' tv-V ti ", rif- this AssuMWt i)11.
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1. 02

0. 966

0. 901

0. 736

1.05

0. 583

0. 705
TABLE 2. COMPUTED RATIO

0. 73 OF CROSS RANGE TO RANGE

0. 786 SCALE FACTOR USING PLAN
VIEWS OF THE F-5E.0. 774

0. 8(Currect Value is 0.bio)

0. 749

0.742

0. 7s0

0. 590

0. o 86

0. 583



Section IV
RANGE IMAGE CLASSIFICATION USING RANGE

AND CROSS RANGE COLLAPSING

In addition to feature vectors computed from the geometric momrents

of the image feature vectors obtained by collapsing the image intensities along

two orthogonal axes are also tested. Using the three second order moments

P02' p 2 and pl1 the orientation of the target in the image plane is computed

from Equation 39 and the ima2es are rotated so that the same orientatiun

is used for all images. The intensity distribution of the rotated images is

then averaged along the Y and X axes to produce average X-axis and Y-axis

intensity profiles as shown in Figure 23. The correlation function s of the

X-axis and the Y-axis intensity profiles are computed and used to construct

a feature vector as shown in Figure 23. The perforniance of this feature

vector %%as tested using the radar images generatec in Section II and the

results are ,resented in Section VI.

" : r
x  

15)

FEATURE.

v N

R,, K k

V N
ICI

X, X: 2 
pR

, k, RV 0'

F qurp 23 Computation of feature vector usinq rarqe and cross aqe collapsmiq

kP B T

~i~hJj~GPAL BLAO( LiOTF~



Section V
CLASSIFIER DESIGN AND OPTIMUM FEATURE SELECTION

The classifier algorithm uses the above measured feature vectors

to classify the target into one of M possible target classes. A review of the

literature on pattern recognition shows that many techniques can be used

to design such classifiers. Among the most common are the nearest neigh-

bor, maximum likelihood, linearized Bayes, and Fisher's linear discrim-

inant technique. The performance of classifiers, designed using the above

techniques, depends on the available learning samples and the particular

classification problem. Since this investigation is prinarily curnct-rned

wvith the analysis of the performance of feature vectors computed using the

method of moments, no elaborate classifier designs are attempted. Instead

two classifiers are used: the Kth nearest neighbor and the Gaussian classifier.

These two classifiers and two schemes used in reducing the dimensionality

of the feature vectors are described in this section.

5. IKth NEAREST NEIGHBOR CLASSIFIER

The nearest neighbor classifier decides that a measured feature

vector X beLonas to target T. if

X- =min X - (53
n i,k

x a measuired feature ,(ect r fr tar,-,e t at the th t aij
andI X den,,tes the norm , f X.

, ,~i e ,. P" BLA N - I I



A ,,eneralization of the Kth nearest neighbor classifier is the distance

wveighted Kth nearest neighbor used for many of the classification tests

described in Section VI. To classify a measured feature vector X using

this classifier the K nearest neighbors of X are found from the training set

SX1 , X, XK I and are ordered so that their distances d. X H X - X.
K 1

from X are increasing

d I < d ), < . .< d E •

Using these distances, a set of weights W. 's are computed as follows.

d -d.

d dd
W. - )d KE 1d (54)

W. = I iff d d (55)
SK I

These weiahts are then normalized so that their sum is equal to unity

w.x . -z (5t)
j t<

N w'

S si}le tar2et classs ("I . . . C, are computed from

m' o; W .

NE'



Since

Ww = 1.0

the class weights W(in) can be considered as an estimate of p(X/C 1, and

the unknown target is identified as target Cm if

W = max WIn) (5)
n

w-here 0 _ p < 1 is a threshold used for the decision of unknown; i.e. , if

max (W( n ) ) < p an unknown is declared.
n

To reduce the computations required for this classification scheme,

a technique developed by Friedman, et al. [o, is used. According to their

algorithm, the set of feature vectors from all the classes are sorted on the

values of one of the coordinates. Then for each test vector, the trainin',

feature vectors are examined in the order of their projected distance fr,,m

the test vector on the sorted coordinate. When this projected distance

becomes Larger than the distance to the LKth closest vector of those traininc

•.-octors already examined the search stops, the K closest vectors of th(,se

already examined are those for the entire training set.

.2 GAUSSIAN (LASSIFIER

The Gaussian classifier is a maximum likel ih,,( d classifier ,ndr !h,

.s sunti')n that as the target as.)cCt -.-aries the measured featurc :ectirs

X are ia: n,. v.ctcrs cistrihutd accurdin t(, the minltivariatc za'assin

(:nsitv. ;'n r this ass .inmtio,n, the classificati,)n a L',rithn is rieeci

the ,:, nutatin ,4 ,A q'iacratic riscrn-.inant Ilnctin 2i'-n D,

r
DX - T n S. -; A-A _.'

p

-7i
7 A.



where the indicates the 'determinant of , X. is an estimate (if the

mean value of the feature vector X for the jth target and S. is an estimate3

-f the covariance matrix of X for the jth target. To obtain these estimates,

a set of N learning samples of the feature vector X is used to represent each

target over a range of aspect angles. This set of feature vectors is repre-

sented by

=here N is the number of aspects and j 2, K indicates the class

or target (C.) membership. Using this training set, the target means

are computed by

N

Sz x=l, 2,...,K (o0)S N - -'
L= 1

and the tdrqet scatter or covariance matrices are

N
Si \ yJ, - yj) T 1N~ .- 3 . 1. 2. I

i%-I

-n ~ these estimates of the mean and covariance (,f tlae fcatire ' vectt)r for

'ath taraet, the quadratic discriminants D. X i ........ K 4 Equatiwn (5'4

art ' aluat-r; fur X ,qulal to the measured fteature vcctor. The i..ature-

n .t r ;s ,t-n assi,2ne d t taret C. :f

D .(X , 2! D ,,X l f!,r all ' t

'rI



To allow for the rejection of an unrecognizable feature vector, tw--

additional tests are performed before the vector X is assigned to target C..

The first test is based on Hotelling's generalized T- statistic, [10] which

is given by

_ T - -
T (X . S. (X - X.j (u3)3 3 3

If the dimensionalitv of the feature vector X is M and if N trainingz vectors

are used in computing the mean X. and covariance S. for class C. then the
3 i 1

statistic

ndistributed accordinU to the central F distribution 'A\ith v NI and v,
1' -

N -%i d.,, recs of freedorn [10] , [1 1]. So for a confidence inte rvai I -

T 2  N•MF o) (4)

M, N-NI

,r eanitle, using' taouiated values Of the F dtstrLbutlun [121 thc results art.

t:uat : tho cdmenstonal tv of the feature vector LS 11 and Lf 16 tramnmo vct,,r S

are u sed then for a '17.5 percent confidence tnterval, (F -. 7 7

_2~ 12- x 5. 3 7 P4', ,

f :, t, raininZ set i2c7Was'.d IX. 7 Uat!ire -.-otors, then fur the sanu.

IUXn Iid ., :nter'al ' ~ ., , 5 -- .",
12, 15

- - -- -( tIC . ' .\ ~o n il .,t-



is maximized by X. The second test is used to safeguard against misclassifi-

cation of feature vectors that have a high probability of belonging to more

than one class and is based on the cost to reject as compared to the loss

incurred for making a substitution error. Assuming that the observed

feature vector X is to be assigned to one of K classes and denoting by a.

for i = 1... K the action of choosing class Ci and by aK+lP the action of

rejection, then if \(a./C.) is the loss incurred for choosing action a. when

class C. is present, the Bayes risk is given by
3

E

R(a /X) = k(ai/CI p(Cj/X) (05)
1 3

j=l

Assum'ng that all classes are equiprobable and that

S 0 i j i, j=1. .

ka = /C i =K +o)

othe rwi s e

and usin2 the Baves rule:

p(X/C.) P C,.)
p(C./X) - J

p(X)

',, rusutifl2 11-K iU;IctionS satisfy the rielatirn

[--
R( a. "X) Ns 1( -c

'ST

li r- I, -I

(x C.

Aa



I

From above, the selection of the action that minimizes the Bayes risk is

equivalent to the selection of class C. if1

p(X/C) a p(X/C.) for j 1, K (u 8)1. J

and

p(X/C.) -

K> - q, (9)

p(X/C.)

Otherwise, the decision to re-ject is optimum. Under the assumption that

all classes are equiprobable application of Baes rule ives

p(X/C.)

p(C./X) = 1 - q (70)

Y p (X/C.

j=l

and under the Gaussian density assumption

p(Ci/X ; { exp Di(X) - DI(X) } q (7)

%vh te D.AX) is ziven by ECIuatLfn (59).

-n sunmmary the Gaussiaa classifier used in this study assi cns a

feature vector X to class K. f:

1) D.IX1 z D.(X for all i 172)

~ 1



-T (73)NM

a rid

3) p(C /X) { e> ex p D(X) D (X)1 > q (74)I

whe re:

D =X infIS! (x jr -S (XX. (75)

N I dime nsionalitv of X

N =number of training vectors for class C.

,'-confidence interval

and q is a threshold ()n the a posteriori probability D(C.i 'X) which can be

expressed as

q = r (70

'.vhCrc' \ s the I,)ss incurredi bv thc decision to roecet an(!\ is the loss

clue t,: a nusclas sifcatton or ror.

FEATURE SELLCTION IUSING A GEN\ERALIZ-ED NiAITALANOBIS
DISTANCE

Siuc e the ,)r )e s sin_, (f hic ilh dinmensional feature .-ec tor s is ct)St

i toermfs : ~ruaintime andl ct mputer n-etmory,, requiremnents. tht,

u;:nmns; fait Iht, feature betrsol e limited the rnininvirn nce

-ar- su( ruerc!assific:atien. A nietheid is riesc:'hed here, thiat

tli dinomnsitnalitv f thec foature vec ti- Iby seetcsibswt *

tt'ires ifer ran]-ini- tlie featu'res -IL'(- t iliir iron rtanct. Is 2

r- ':.- :n~ s. The t it r t, ed to rkh e, ~esibsdo

1:1 1): s -i! I. ..I i)



d = tr (W B (77)

whe re:

K

w w

is the total within-class scatter matrix

K

B : n. M%. NI

i= i (

is the between-classes scatter matrix,

M. X, i =1, .. K

X(C.

are the class means and

W (X . iX -.

XEC.

1N
2 T -1

C. - ri. N . WV N . •(-',)

-=1



Equation (78) is used as a measure of the interclass distance. When the

dimensionality of the feature vector X is less than the total number of avail-

able features, the elements of X are selected to maximize the interclass
)

distance d . Since the total number of possible combinations of s features

out of m available features is

(in) m:
= (i - s)!.s!

which can be very large

for example (3)- 10 1 io

an exhaustive search is not practical. To overcome this difficulty Gi,nz alcz.

and Moret [8] developed a stepwise search procedure that selects features

seq-ientialty so that at every step the selected feature together with th,,se

already selected yield a maximum of the Mahalanobis distance. This

meth(od will produce the optimal subset when the features are statistically

inienendent. When the features are correlated, however, the interdependence

,,f the elements (f the feature vector requires that they all be considered

t.....ther at every stejp. Thus a steopvise nr,,codure may not always yield the

.ntinal solution in such cases. To speei this stepwise process, CGonzalez

M:u Xl ret [ introduced a recursive prc edur, for updating the inverse ,)I

t- t t ,tal ,within-c lass -catter matrix W us new crrninoe'nts are adde.d t, the

t.-,, -,,ctor. With )ut o,in2 thr nih the details ,f their derivati ,n, the

1.- is 1 1 i'.

-7A i,. i.i ':It,.

W t . , 1  . . . . . an .XI .<. - l  - - -
IVI
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U v

K+1> T

3~wZ T V KZ) , V= PW Kz

UJ WE I + (W1 . I) (W 17T

dj~l Kt1  EA~ 10M+1 1 K K Ko K EK

which can be w.ritten as

d ( Acl' (70)

Above NK is the iteratien index that sh 'uld '(t bu C *nfused wvith th.. subscript

mr Equaton ( 8) indicatm- class Frsip te,:tami the .jerIt

ncremencnt in d~ (ouver ati cAa s scs ) 4a Equato in 7) the mcrve t of

Equatwnr ( 7)) inus t b~e s umnwd mcyer all thw clas ses. hUS M inSelect n,

an adcliktnna, fe atu re at each s tep, -nl the ab' ,t fc P ink rent in (I ced el )t

:4 DIX%!ENSIONALITY REDU(TION BY PROTECTING TNlE FEADrUE
\COR INTO A LOWER DDIEN SIONAL ST-FSPAi K

A aycases where all L, mpcntns -f the iatir,' tr ar

aW Inwar trrins rrnaHln can bt ost(d 0, Ptbu" tho thmonsi, nalit

tr. Ilvts -this ton w scit. ts a subww A KcryAi:wn~

-htrn Kna r c xm~bnati s 4 aHt r ailahl :eituts. tOnu na-1aa2

'-~~5:it f . .thet :)r'.-j151V% frt'scrltes- l ti, n nr iii ri. hA ., 1
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Since for a K class problem a K dimensional feature vector is

adequate for classification, an (M x K) matrix H is introduced to transform

the original M-dimensional feature vector X into a K dimensional feature

vector Y by letting

Y - HTX(8

The matri>: H is chosen so that the derived feature vectors Y from the kth

class for k= 1, 2, K cluster around the points

0

Ek =  K o kth element ( 1)

0

in K rimensinal space.

If the training, set consists )f feature vectors

J :1, , ... ,

S ' j 1, ", . ... , t I

'h.-n tlh, r-(4lii-,,mtn-t that the, rer",or featir v ,rv , istr i in

tb . Int ; L11 1)(' I,. f rniul,tt-.I a ; Uln .,111 l,-.tl .1 D I ),. M] v\''il r(., niiri%

i{ a ,='h 3 hit thm, :-it,,r ,,n

'T

\" \" (~'

I i l



is minimized. Using the trace and the cyclic properties of the trace

operator, the above can also be written as

K N

j tr(H TXk)(Xk)T H - tr (E HTx k) ET E,., ,_,l li k k

k=l i=I

If the elements of 11 are

(hij j= ... E

i= 1. M
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Using this matrix H, the original feature vector X is transformed into the

K dimensional vector Y given by

Y = HT X

and both training and classification is performed using this derived feature

vector Y.

i
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Section VI
RADAR IMAGE CLASSIFICATION RESULTS

Using the imaging algorithms described in Section 11, a set of 540

plane view images was formed from the RATSCAT data base (108 images

per target for 1/3 scaled models of an F-102, an F-15, a YF-16, an F-5E

and an A -10). As mentioned earlier the data were collected at X band

against 1/3 scale models using a total of 256 frequency steps with 3.4 MHz

step size. For the full size targets these measurements correspond to

S-band data with a measurement bandwidth of about 256 MHz. Out of the total

of 108 images per target the first 72 images for each target were obtained

using the lower 128 frequency measurements covering a bandwidth of

128 MHz out of the 256 MHz measurement bandwidth while the last 36 images

per target were obtained using the upper 128 frequency measurements.

The resulting range resolution on the full scale targets is 1.17 meters. For

each image, a 3 degree rotation of the target was used resulting in a cross

range resolution of 0.95 meters on the full scale target. The images were

formed over the following set of aspect angles 0- 3 degrees, 5 - 8 degrees...

175- 178 degrees and 2- 5 degrees, 7- 10 degrees, 12 - 15 degrees ....

177-180 degrees for the first set of 128 frequencies and for aspects of

0- 3 degrees, 5- 8 degrees, ... 175 - 178 degrees for the second set of

128 frequencies. Examples of these images are shown in Figures 24

through 28.

The images of the F-Ill were formed by C.C. Chen [14] using data

obtained with the ALCOR radar. The data were recorded from a maneuvering

F-Ill target aircraft using a linear FM waveform with 500 MHz instantaneous

bandwidth. The resolution of the inages from this target was reduced to

match the resolution of the RATSCAT inages. The images for this target

were formed over the following aspect angles.

(3
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0 - 3 degrees, 5 - 8 degrees,

85 - 87 degrees and 2 - 5 degrees,

7 - 10 degrees .87 - 90 degrees.

Examples of images from this target are shown in Figure 29. All of the a ,,)JV

images correspond to top views of the targets i. e. projections on the horizontal

plane. From the NOSC data set a small number of images (10 top views and

10 side views) was obtained for a DC-10, and examples are shown in Fig-

ure 13. Because this target was moving, it was necessary to use tle- full

256 Xl lz measurement bandwidth to properly focus and align the range-

signatures used in forming the image. For classification tests only thc ten

side views obtained on this target have been used. These Images xerc

combined wkith a set of ten side view images obtained using RA ESCA T casure-

ments for the F-5t-, and the A-10. file side vte\ s on thtse targets, ,xallpl.s

of which are shown in Figures 9 and 10, .erc obtained for a 0.2 de gree

rotation o)f the target for nose aspects (-18.2 to -12.0 degrees, -15.2 tt

-9 degree cs, -11.2 to -t degrees, -912 to -3 degrees, -t.2 to 0 degrees,

0 to t.2 de'crees, 3.2 to 9.7 degrees, 6.0 ti 12.2 degrees, 9.0 to 15.2 degrees,

12.0 to 18.2 degrees) using the full 25t, XNltz measure ment band width resulting

in1 ).t, llite " range( resolution and 0.5 niuter cross range. resolution on tht.

full scale target.

III ad(dition to the above classification tests the classi'lers werek

also prc's'nte' With tolp Vie\ Images of the RATSCAT targets obtained asin

the full 25o l I z bandwidth and a o.2 dclurke rotation of the target. F) or

these tests 24 images per target for the fiV" RA !ASC;AT targets \we rc formedu

ov'r the following set oI aspects (0. - 7 dreegrs, (.8 -. .l.grts .

i0.8 - 17 degrees, 140.8 - 147 degrees, 1-0.8 - 151 degrees ..... 170.8

- 177 dugres) and . 8 - 10 dlgrces, ). 8 - It) d .Lit-ees, ... . 8 - 10 degrees,

14 1. 8 - 150 degre'es, 149. 8 - 1St' degrees, . 7 .13. 8 - 180 degrees) and the

classifier wits traiined on the first set and classified the second. lVxamples of

these images are sho\.n in Section II.
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6.1 CLASSIFICATION PERFORMANCE OF FEATURE VECTORS
USING THE CENTRAL MOMENTS

In this section perfo rmance results, art, presented fur featuro VectL rs

computed using moments from the image, a combination of moments from

the image and edge detected image and moments from the e-dg7e dt-tected

image. or the classification tests the Kth nearest neighbo r classifier an(.:

the Gaussian classifier have been used.

To avoid the problern of sing-ular covariance miatrice-s resulting, fromn

training, sets with a small number of learning vectors as compared to their

dimensionality. w,,henever the training set wvas small in comparison to the

number of features the kth nearest neiLhbor classifier wvas used.

For the classification tests in this studyv the measurpmt-nts on the

targets ranging_ from 0 degzrees (for nose aspects) to 180O degrees ifor tail

7ispect s) ii t!het plan \Utniagues ,%eo.1 sbiviride into either fu~tr

45, diegree sectors (0O 4; degrees, 4; 00 deg,_rees. 0 - 1 3 dgrs

135 - 180 degaree s) or three (,0 degre e se-ctors 10 -0 degees , ) - 1201dg e5

120 - 1iSO deurees). In each case the classifiers wvere trained a-nd . '

on a Der sector basis.

For classification using the cenrtral moments from the imiage and from

the edg-e dletected imnag-e all moments of orders 2 to 7 wvero computed giving_

a total number of 33 central mnoments. For the classification tests lisin'g

the Kth nearest neighh)or for thet plalili~ rnae-i th 1. 17 mi ;'

and 0.0 nimeter cross rang-e resolution the( classifier was trained ising-

Siniages neCr target obtained using tho lowver 12,1 grequcoc V% stopus 0:-e r

- ': r ce. -- 'l "-~17- 1-,'

7.......

7 ........ .



the F-Ill was: '120' "'02' 1140' 122' 1130' "131' "'60' "170' "112' "41' 151"

24' where the first index corresponds to range and the second to cross

range. The corresponding ranking of the best 12 central moments from the

edge detected image is 4120, "02' "40' "22' "60' 131' "30' "'50' '24' "04'

'0o' 14)' F iures 30 and 31 show the classification performance ubtaineci 4

usng all 33 moments from the image. Figures 32 and 33 show the

classification performance obtained when the best 12 moments from the

ima)e and the best 12 moments from the edge detected image are combined

to form a 24 element feature vector. These fi,2ures show the performance

is of the order of 50 to 65 percent. However, when the elements of the

feature vector obtained using the 24 moments (best 12 from imaLe and best

12 from edge detected image) are normalized 1v their standard deviation

over all targets and aspects the kth nearest neiiuhbor classification results

ar.- oi the order L)f 8() tu 117 :)ercent as son in F ,,urtus 34 and " -
ire's -5 thrc, h 3 shu. a detailed tabulati n , the class iLftat ,in rc uit.
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F qure 31. Classification results for 33 moments from image intensity (1M resolution plan views 6 classes)

using kth nearest neighbor (with unknown), for 450 and 600 sectors.
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Figure 33. K-th nearest neighbor classification results (I m resolution plan views 6 classes) for 24 moments (12

best from image and 12 best from edge detected image) (with unknown) for 450 and 600 sectors.
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CLASSIFIER DECISION CLASSIFIER DECISION

F-102 F-15 F-16 F-SE A-10 F111 UNKN F-102 F-15 F-16 F-SE A-10 F-111 UNKN

F-102 17 1 0 F-102 17 1 0
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( A-10 18 0 
4  
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% CORRECT DECISION: 85% % CORRECT DECISION: 80%

Figure 35. Kth nearest neighbor classification results
Ilm resolution plan view images) for K = 6 Figure 36. Kth nearest neighbor classification results

(1m esoutin pln vew mage) fr K= 6(1M resolution plan view images) for K 
= 

6
for 24 moments (best 12 from image and fmet plan view image frK
best 12 from edge detected image) normalizedfor 24 moments (best 12 from image and~best 12 from edge detected image) normalized
by their standard deviations for 00 to 450 best 12 from edge detected image) normalized
aspect angles (00 is nose-on). Threshold for by their standard deviations for 450 o 900
unknown = 0.0. aspects. Threshold for unknown = 0.0.
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Figure 39. Kth nearest neighbor classification results (1 m resolution plan views 6 classes)for 24 moments (1 2
best from image and 12 best from edge detected image) normalized by their standard deviations
with provision for unknown.
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CLASSIFIER DECISION CLASSIFIER DECISION

F-102 F-15 F-16 F-SE A-10 F-111 UNKN F-102 F-15 F-16 F-5E A-10 F-11i UNKN

F-02 14 4 F-102 13 5

F-15 14 1 3 F-15 14 2

Fw16-k 6 4F-16 1 13 4 F-16

F-SE 1 10 7 '- F-5E 1 10 7

A-10 17 1 < A-JO' 13 5

F-r7 2 F-111 4 5

PLAN VIEWS NOSE ASPECTS ONE METER RESOLUTION % CORRECT DECISION: 90%

% CORRECT DECISION: 96% % UNKNOWN: 31%
% UNKNOWN: 21%

Figure 41. Kth nearest neighbor classification results
Figure 40. Kth nearest neighbor classification results (im resolution plan views) for K = 6 for

(im resolution plan views) for K = 6 for 24 moments (best 12 from image and best
24 moments (best 12 from image and best 12 from edge detected image) normalized
12 from edge detected image) normalized by their standard deviations for 450 to
by their standard deviations for 00 to 450 900 aspects. Threshold for unknown
aspects. Threshold for unknown = 0.5. 0.5.
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F ']Ljr,? 42. Kth nearest neighbor classification results Fgur, e 43. Kth nearest neighbor ilassitication results

i m resolution plan viewsl for K = 6 for (1 m resolution plan viewsi for K = 8
24 moments (best 12 from image and best for 24 moments (b)est 12 from mage and
12 'rom edge detected imaqe) normalized best 12 from edqe .etected ,maoe for 135(

by their standard deviations for 900 to to 1800 aspects. Threshold for unknown

135o aspects. Threshold - 0.5. 0.5.
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CLASSIFIER DECISION CLASSIFIER DECISION

F-102 F-15 F-16 F-5E A-10 F-111 UNKN F-102 F-15 F-16 F-SE A-10 F-Ill UNKN
F-IS A-5 F.F-lU?1

UNK

F-102 6 F-102 5 1

U, F-16 a )F.16 6

I F-SE 2 4 1- F-5E 4 2

p A-10 6 < A-10 6
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F-111 IF-11l

PLAN VIEWS NOSE ASPECTS 0.5 METER RESOLUTION
PLAN VIEWS NOSE ASPECTS 0.5 METER RESOLUTION

% CORRECT DECISION: 90% % CORRECT DECISION; 96%

% UNKNOWN - 10%

Figure 44. Kth nearest neighbor classification results

(0.5 meter resolution plan views) for Figure 45. Kth nearest neighbor classifications results

K = 5 for 24 moments (best 12 from image (0,5 meter resolution plan views) for

and best 12 from edge detected image) K = 7 for 24 moments (best 12 from image

normalized by their standard deviations and best 12 from edge detected image)

for 00 to 400 aspects. Threshold = 0.0. normalized by their standard deviations

for 00 to 400 aspects. Threshold = 0.5.
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Figure 46. Kth nearest neiahbor classification results

for K = 5 for 24 moments (best 12 from
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rmaqe) normalized by their standard
deviations for 140

0 
to 1800 aspects.
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are shown in Tables 3 and 4. Tables 5 and b showk classificatiun results

with the Gaussian classifier using three 60 degree sectors for the best 1,

moments from the image and for the best nine moments from the image

combined with the best nine from the edge detected image. Tables 7 and 6

show cladsification results using the best 12 moments from the edge detected

image using the Gaussian classifier with 45 degree sectors. In general, the

best overall performance was obtained using the best 12 moments from the

imaue although for nose aspects the 12-dimensional feature vector usinu the

moments from the edge detected image and the feature vector using six

moments from the image and six from the edge detected image did better.

Using 10 profile views of the DC-10, F-SE and A-10 and the best

IS normalized moments from the image, classification tests were performed

with the kth nearest neighbor rule for k = 4. The classifier was trained

us inL five images per target and was tested with the remaining five per

tar'get. A perfect score was obtained in this test, and the results are shown

,,n F:-,ure 47.

CLASSFIER DECISJON

OC-10 F-SE A-10 UNKN

uj

I-
Z

O C-1O 5
U,

M -

F-SE 5

4

A-10 5

Figure 47. Kth nearest neighbor classifier using 18

normalized moments. Profile images with
0.5 meter resolution (nose aspects),
(K =4).



TABLE 3. CLASSIFICATION RESULTS FOR 450 SECTORS (SECTOR I IS
NOSE ASPECTS AND SECTOR 4 IS TAIL ASPECTS) USING THE BEST 1-
OUT OF 33 MOMENTS COMPUTED FROM THE IMAGE INTENSIFIES USING
THE GAUSSIAN CLASSIFIER wir p 100 PERCENF AND q 0.0

FOR SECTOR ;I

TARGET: **IDEiNTIFIED AS**,
F-102 F-15 F-16 F-5E A-iD F-ill UK

F-102 9 0 0 9 0 0 0
F-15 1 5 I 2 0 0 0
F-I10 O 0 4 4 0 1 a
F-5E 0 0 0 9 0 0 9
A-iM 0 0 0 0 3 1 0
F-ill 0 0 0 0 0 9 C)
PROBAEILITY FOR A CORRECT DECISIOl 81"

FOR SECTOR 2
TARGET: **IDENTIFIED AS**

F-102 F-IS F-16 F-5E A-1O F-ill UK
F-102 6 0 0 0 3 0 0
F-15 0 5 1 2 0 1 0
F-16 0 0 5 3 0 1 0
F-5E 0 0 1 6 1 0 0
A-10 0 0 0 0 9 0 0
F-ill 0 0 0 0 0 9 0
PROBABILITY FOR A CORRECT DECISION 755,

FOR SECTOR =3
TARGET: 'IDENTIFIED AS:':=':

F-102 F-15 F-16 F-5E A-i0 F-Ill UK
F-102 9 0 0 0 0 0 0
F-15 0 9 0 0 0 0 0

-6 0 9 0 0 0 0 0
-SE 2 0 7 0 0 0 0

-nI I 0 0 6 2 0 0
;-;, 0 0 0 0 0 0 0
OROBABILITY FOR A CORRECT DECISION 36

F:R SECTOR z4
TARGET : IDENTIFIED 4S

F-]12 F-15 F-16 F-5E A-IC F-ill K
-K2 0 0 0 0 0 0

I 2 i '
3 03 0 -,

- i 8) C) '0 P ,
> C%:BIL T1 FO C) COPPECT CECJ-_-1DIJ ,



TABLE 4. CLASSIFICATION RESULTS FOR 45° SECTORS USING 12

MOMENTS (BEST 6 FROM IMAGE AND BEST 6 FROM EDGE DETECTED
IMAGE) USING THE GAUSSIAN CLASSIFIER WITH a = 99 PERCENT AND
q =0.0

F" R E :: C "T" 0 I t:.:"-_'__"l["-( R -11= J.

TARGET: **IDENTIFIED AS**
F-i02 F-iS F-i6 F-SE A-iO F-iii UK

F-i02 8 0 0 0 0 0 i
F-iS 0 7 2 0 0 0 0

F-i6 3 0 6 0 0 0 0

F-SE i 0 0 6 0 0 0

A-iO 0 0 0 0 9 0 0

F-iii 0 0 0 0 0 9 0
PROBAILITY FOR A CORRECT DECISION

PERCENT UKNOU 21

i:"- () N E"; E: "T" C) N :11: -?

TARGET: **IDENTIFIED AS**
F-102 F-iS F-16 F-SE A.-iO F-iii UK

F-i02 9 0 0 0 0 0 0
F-IS 0 4 4 1 0 0 0

F-i6 2 0 3 1 3 0 0

F-SE 3 0 0 6 0 0 0

A-io 1 0 0 0 7 0 

F-ilu 0 0 0 0 0 9 0
PRORMILITY FOR A CORRECT DECISION 71%

PERCENT IMN% 2%

I::" a i" s l:: C,' *' C) I :0: .

TARGET: **IDENTIFIED AS**

F-102 F-iS F-i F-SE A-iO F-ili UK

F-102 9 0 0 0 0 a 0
F-iS 0 9 0 0 0 0 0

F-26 2 0 0 0 0

F-SE i 0 0 3 0 0 0

A-to 2 a 0 0 7 0 0

F- ili 0 0 0 0 0 0 0

PRCEABILITY FOR A CORRECT DECISION 34%
PERCENT UMKNWA 1%

F:(} z i I!' 1 :: T"( I;Z 411: A'

TARGET: X*IDENTIFIED AS**
F-102 F-iS F-i6 F-SE A-10 F--li UK

F-102 9 0 0 0 0 0

F-iS 3 4 2 0 0 0 ]

F-i6 2 0 6 1 0 1
F-SE 3 0 0 6 0 0

A -- 0 1 1 (3 3 0
--1 . 0 OI 0 '3 0 3 (

I, [:Y; - :RET:C?: ",



AD-A088 514 HUGH4ES AIRCRAFT CO EL SEGUNDO0 CA RADAR SYSTEMS GROUP P/S 17/9
TARGET IDENTIFICATION USING RADAR IMAGERY AND M OENT METHOS.(U)
JU 80 6 A IOANNIDIS N00014-79-C-0643

IINfI AqCTrrTn w~~a -r n.P @IRN22lflfllllllllll
nEnnnnnnnnnnEI
-llllllEEEEE.-lMENOMONEElll
InEh r1 o981 MM



TABLE 5. CLASSIFICATION RESULTS FOR 600 SECTORS FOR THE BEST
18 MOMENTS OUT OF 33 (COMPUTED FROM THE IMAGE INTENSITY)
USING THE GAUSSIAN CLASSIFIER WITH 3= 99.5 PERCENT AND q = 0.5

F:- r:) 0 F z ; I:" (: "T" C) R :41: 1.

TARGET: **IDENTIFIED AS**
F-102 F-iS F-16 F-SE A-IO F-Ill UK

F-i02 i2 0 0 0 0 0 0
F-iS 1 6 0 2 0 2 1
F-16 2 0 6 2 0 1 1
F-SE 1 0 0 iO 0 0 1
A-iO 0 0 0 0 12 0 0
F-ili 0 0 0 0 0 12 0

PROBABILITY FOR A CORRECT DECISION 84%
PERCENT UNKNOUN 4%

F-" 0' R C.3 UK".". 'T" C') R 1Fz '>

TARGET: **IDENTIFIED AS**
F-i02 F-iS F-l6 F-SE A-1O F-ill UK

F-102 iO 0 0 a 2 0 0
F-iS 0 iO 1 0 1 0 0
F-16 i 0 4 0 6 0 i
F-SE 0 0 0 5 6 0 1
A-iO 0 0 0 0 to 0 2
F-ill 0 0 0 0 0 0 0

PROBABILITY FOR A CORRECT DECISION 69%
PERCENT ItNON 7Z

F:"- (' R .3 iE. (' 'T' 0 F :11: S

TARGET: **IDENTIFIED AS**
F-102 F-iS F-16 F-SE A-iO F-ill UK

F-i02 8 0 0 1 0 0 2
F-IS 0 8 0 4 0 0 0
F-l6 i 0 9 2 0 0 0
F-SE 0 0 0 i0 1 0 1
A-i 0 0 0 0 0 n
F-ill 0 0 0 0 0 0 0

PROBABILITY FOR A CORRECT DECISION $3%
PERCENT UNKNOWN SZ

88



TABLE 6. CLASSIFICATION RESULTS FOR 600 SECTORS FOR THE
BEST 18 MOMENTS (9 FROM IMAGE AND 9 FROM EDGE DETECTED
IMAGE) USING THE GAUSSIAN CLASSIFIER WITH p 100 PERCENT AND
q = 0.0 (NO UNKNOWN)

I.. 0' IR E;.. E': C',"T" 0' I;Z :1U: .

TARG : **IDENTIFIED AS**
F-i02 F-iS F-16 F-SE A-iO F-ill UK

F-102 12 0 0 0 0 0 0
F-IS 0 8 1 0 0 3 0
F-.6 2 0 6 0 0 4 0
F-SE 3 0 0 9 0 0 0
A-iO 1 0 0 0 Ii 0 0
F-ill 0 0 0 0 0 12 0

PROBABILITY FOR A CORRECT DECISION 80%
PERCENT UNKNOWN 11

F:, 0) R ' E: C " C) R :4: '2?

TARGET: **IDENTIFIED AS**
F-i02 F-iS F-16 F-SE A-1O F-111 UK

F-102 Ii 0 0 1 0.l 0
F-iS 0 8 0 0 4 u 0
F-16 4 2 2 1 3 0 0
F-SE 4 0 1 4 3 0 0
A-iO 2 0 0 0 10 0 0
F-ill 0 0 0 0 0r 0

PROBABILITY FOR A CORRECT DECISION S8%
PERCENT UNKNION 1

F:" (0 I- ; .: : ' ' T. ( I: :11: "5

TARGET: **IDENTIFIED AS**
F-102 F-iS F-l6 F-SE A-iO F-ll UK

F-102 tO 0 0 1 0 0 0
F-iS 2 2 7 1 0 0 0
F-16 1 0 1O 1 0 0 0
F-SE 4 0 0 8 0 0 0
A-tO 2 0 0 0 10 0 0
F-ili 0 0 0 0 0 0 0

PROBABILITY FOR A CORRECT DECISION 672
PERCENT UNKNOWN OZ
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TABLE 7. CLASSIFICATION RESULTS FOR 450 SECTORS USING THE
BEST 12 OUT OF 33 MOMENTS COMPUTED FROM THE EDGE DETECTED
IMAGE USING THE GAUSSIAN CLASSIFIER WITH 100 PERCENT AND

=0.0
F:" (:3 R .] lEE: [C "T" [] l :II: jI.

TARGET: **IDENTIFIED AS**
F-t02 F-is r-16 F"-SE A-'iO F-lit K(

t7 -102 0 0 0 0 I V
F-I. 8! 0 0 (1
F 0 0 ra 3 1

a1 0 O 9 0 0 a
A-10 ) 0 0 (9 (1 0
F--il 0 0 0 0 0 9 0

PROBABILITY FOR A CORRECT DECISION 90%
PERCENT UNKNOWN 0%
F:" (. I )' l : ' T' (: I; :11: '

-., T : I Di.i f !1 . * 13'y
: :" 2 r -." -1, .El g--.f F-

," - 1 0I. N 3

03,BI:B.TY F A RRET XECSION %
PERCEN" UNKNOWN 09

' .. '1 1

-" " '. " . 1'

1 1

P'3DB L:TY FOR A COP RECT' DECISION ,3%

m 90



TABLE 8. CLASSIFICATION RESULTS FOR 450 SECTORS USING THE
BEST 12 OUT OF 33 MOMENTS COMPUTED FROM THE EDGE DETECTED
IMAGE USING THE GAUSSIAN CLASSIFIER WITH = 99 PERCENT AND

T, Ar. ET: **IDENTIFIED AS**
F'- l F-iS F-i6 F-S'E 1- I F I- - l Jl(

- ,0 0 0 I

F -"" 0 I)

0 0 9
a: l( '1 8 0] 0 t

-- 0t ]i 0 0 0 ( 0 1
0:-tiL( 11 fl (1 0 9 (1

ILITY FO ~t-RRCT ECISLON 90%
:EQC:NT 'lNKN4WN 2,

F:" ) I:-z <:> l: : " " V ') . :1: ":"
.,......................

- - .: !t4 ,-. .. 1 1

"l . ." ,U( : ' .

-'; BLZ, -'i C2RECT 7Ec;sION 76%
ZE N , £:NWN 4%.

. ........ .. I. . r' : " .I'

9 ,

- ,.. . iI.

F: A'; ' :: .. ( " T I ) .' I -'

, ,., {' . . 1:

*** ~ *.............__________________________________________________
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6.2 CLASSIFICATION RESULTS USING INVARIANT MOMENT FUNCTIONS

As described in Section III some algebraic relations among the

central moments of an image are invariant with respect to rotations of the

image in the image plane. These relations are known as orthogonal invariant

moment functions and have been proven to be a usefull feature for shape

recognition in photographs and FLIR images. As described in Section III

and Appendix A, 33 orthogonal moment invariants were computed using all

central moments of orders 2 to 7. Orthogonal moment invariants were

computed using both the image and the edge detected image. The invariant

moment functions were ranked in terms of their importance as classification

features using the Mahalanobis distance criterion described in Section 5.

The resulting ordering was the same for both the invariants from the image

and the invariants from the edge detected image. This ordering is:

P21'P29' Pl' P2' P3' P4 ' P5' P6' P7' P8' P9' P10' P18' P17' PZ2' P28' P23'

pZ0 , where the invariants p are defined in Appendix A.

Using a 24-element feature vector obtained by combining the best

12 invariants from the image and the best 12 invariants from the edge

detected image classification tests were performed against the I meter

resolution plan view images of the five RATSCAT aircraft models and the

F-ill. For these tests the kth nearest neighbor classifier was used. The

results are summarized in Figure 48. The training set for the RATSCAT

targets consisted of 3b images per target formed by using the first set of

128 frequency steps over the following set of aspects 0 to 3 degrees, 5 to

8 degrees, .. . 175 to 178 degrees. The testing set consisted of 72 images

per target, where 36 were obtained from the same set of 128 frequency steps

for data coLLected from aspects 2 to 5 degrees, 7 to 10 degrees, ... 177 to

180 degrees); 36 additional images were obtained from the next 128 frequency

steps (out of the total 25o steps used for data collection) for aspects (0 to

3 degrees, 5 to 8 degrees, .... 175 to 178 degrees). The training set for the

F-111 images obtained using the ALCOR radar data consisted of images

formed over the following set of aspects (0 to 3 degrees, 5 to 8 degrees,

.85 to 87 degrees). The testing set for this target consisted of images

furmed over the set of aspects (2 to 5 degrees, 7 to I0 degrees,
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Figure 48. Classification performance of 24 invariants (best 12 from image and best 12 from edge detected
image) with the kth nearest neighbor. Invariants were normalized by the radius of gyration.

. . .7 to 00 degrees). Figure 49 summarizes the classification results for

the best 12 invariants from the ianage usiny the kth nearest neilhbor rule

and Figure 50 summarizes the results obtained usin the kth nearest neighbor

A th a feature vector inade up of the six best invariants froml the irnage and

the six best invariants from the edge detected imape. Results obtained usinc'

the (Gaussian classifier wvith the best 1. and best 17 variants from the ilna,,e

an(i also with the best six and six invariants ( ima.,e and etl e detected tia,ut tI

ani ,ith the best n-,ne and nine are tabulated in Tables ') through 12. Vt, r

the aoove classification tests the invariant in')inent funCtlons \ere n(linali .nt-
k

:J, the factor r ,here r !s the radius ot -ration defined in Equati(,n (2:

A."(. t.., 11t)v-er de )encis on the order of the n-var ant and is obtained LsTI L

t,' l,',rth (iescribed in Anelel.tx A. S1ine classification tests we-r, als,,

' r:", ri'e : "}re" the invariants were nrornaliz,( by thcir standard rhv~at;,s

Sv.- all as )ets and taruets) rather than ny the !)k \\ers of the ra(iius ,I

;I shows the cLass ficatl, )n ne r ,,an 1,btalned u.nc the'
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TABLE 9. CLASSIFICATION RESULTS FOR 450 SECTORS FOR THE
BEST 12 INVARIANTS FROM THE IMAGE USING THE GAUSSIAN CLASSIFIER
WITH P = 99 PERCENT AND q: 0.7

:" C) R 13 1:': C r (3 R * :lit 1.

TARGET: **IDENTIFIED AS**
F-i02 F-IS F-16 F-SE A-iO F-ill UK

F-i02 7 1 1 0 0 0 0
F-iS 1 7 0 1 0 0 0
F-i6 2 1 4 1 0 0 1
F-SE 0 3 0 6 0 0 0
A-iO 0 1 0 0 8 0 0
F-ill 0 0 0 0 0 9 0

PNOB1ILITY FG2 A CORRECT PECISION 772
F:" (1) R -fl I::: t' ",T" C3 z -:1 '>

TARGET: *IDENTIFIED AS**
F-102 F-IS F-t6 F-SE A-iO F-ill UK

F-12 4 0 1 0 4 0 3,- S23 0 1 i i
F-i.6 1 2 0 3 0 0 3
F-SE 2 1 1 71 0 0 0
A-i0 a 0 0 2 4 2 t
F-iii 0 0 0 a 0 9 0

P.2..ILITY FC7 A CURECT DECISICN SIZ
F:" 0Z IR 1, ::: (:,' T"'(') 1;? -fit "'s

TARGET: **IDENTIFIED AS-*1
F-102 F-1- F-16 F-SE A-iO F-itl UK

F-102 7 0 1 0 0 3
F-IS 0 8 0 i 0 1'
F- 4 0 4 0 1 1)
F-SE 2 1 i 4 0 0
A-i O 1 2 0 1 3 2
F-li i 0 0 0 0:

PF20UILITY FT A I2rRRECT XCISION 6S1
::" (:3 I " IEC) r "T C) . :jl: 4

T-,R, E T :) EIDENTIFIED AS*
F-i02 F-A. F-id 6 -- E A-tO F-li. 2j K

7 2 0 0

'0 0

,= - E 2 3 3 -

:3

- - : I I.',l ' 0 /
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TABLE 10. CLASSIFICATION RESULTS FOR 450 SECTORS FOR THE
BEST 12 INVARIANTS (6 FROM IMAGE AND 6 FROM EDGE DETECTED
IMAGE) USING THE GAUSSIAN CLASSIFIER WITH = 99 PERCENT AND
q = 0.5

F:" C) IR i.3 1,-: [:1 "T" C[) IR II:- -1.

TARGET: **IDENTIFTED AS**
F-i02 F--iS F-iS F-SE A-i0 F-II U

F-102 7 0 1 0 1 0 0
F-is 1 5 2 1 0 9 H
F-' 5 6 1 .2 2 0 0
F-SE (1 2 i 6 0 f
A.- 0 2 0 9 0 7 0 (1
F-liiI 0 0 (3 0 0 9 0

;?OBABILITY FR2 A COR ECT DECISION 72Z
PERC04T t6NOW J Z

F: 1;z c . '"[ T ) IR :i I:

TARGET; *IDENTIFIED AS*
F-182 F-is F-i.b F-SE A- 0 F-. _

F- 22 3 1 0 u3, .

F-iS 3 2 2
-] 7 f

- 3){ 0 2 5 0 £

-f; .0 9 4 .. '

!7 -1 (3 0 I,)

RCgILiTY F0 A C RRECT $ECISION 57"
-r--N 3 r .C,' (n,

0 ci ; i iE; [ ':] "T" (L : :jj: .T

-, .1 :(* :!D 1,E,,K [ :E T .--_

- .' T C 4.4
'" . : , T'

- " Ae- - .. ' ]

1

-.- "L



TABLE 11. CLASSIFICATION RESULTS FOR 600 SECTORS FOR THE
BEST 17 INVARIANTS FROM THE IMAGE USING THE GAUSSIAN CLASSIFIER
WITH P= 99 PERCENT, q = 0.0

F:" 0D R .E; I"K C, ¥"' . :1:.

TARGET: **IDENTIFIED AS**
F-102 F-iS F-i6 F-SE. A-1O F"i i UK

F - 07, 9 0 2 0 0 -
F- S 0 7 1 1 0 0 3
F -l 1 5/ 2 5 (1 0l

F-SE 0 £ . 10 0 0 0
A- i () 2 0 0 n 10 () 0
F.- t 1. 0 0 0 (, 0 12 0

PROBABILITY FOR A CORRECT DECISION SU
PERCENT UNKNOWN 8%

F," C)1 R :3 1:: (]",'T'(:) IZ -41:,.: 4

TARGET: I**TDENTIFIED "3"*
F- .02 F-iS F-16 F--SF A-in r--i . LK

F- 102 7 0 2 i , (1
F -iS 4 6 U 0 2 0 U
F-i 2 2 3 0 2 )
F -5%E 1 1 0 1 0(.

P-- ,
F-:) 0 3 0 n 0

PROBABILIT' FOR A CORRECT DECISION S6%
PERCENT UNKNOWN 12%

F::" 0) 1: z . (1""T' FZ I :11: .

SR -7 7 **IDENTIFTED AS**
F-102 F-iS F-16 F-SE A-10 F-i1 UK

F-to2 10 0 0 1 0 0 1
F-I5 2 5 3 1 0 0 1

I ,,2 0 2 0 0
F I I 1. / 0 0 ;

F-0 1 2 p 0

F-1 1 0 (i 0 0 0 0 0
PROBABILITY FOR A CORRECT DECISION 68%
PERCENT UNNNOM 16Z

} 7



TABLE 12. CLASSIFICATION RESULTS FOR THE BEST 18 INVARIANTS
(9 FROM IMAGE AND 9 FROM EDGE DETECTED IMAGE USING THE
GAUSSIAN CLASSIFIER WITH p : 99 PERCENT AND q 0.0

F: (:) I R 3 '(: "T"C) I:Z :11: ..

TARGET. -tIDENTIFIED AS**
F-102 F-IS F-16 F-SE A-iO F-Ill. UK

F-i02 7 4 0 1 0 N f

F-iS 0 9 1 1 0 0
F -5 2 2 '7 0 0
F-SE 0 2 0 0 0 0
i- i0( 0 01 0 0 2: Al,

F- 0 0 0 0 12

PROBABILITY FOR A CORRECT DECISION 81%
PERCENT UNKNOWN Z,

TI T * !- DLN I FL)D (S**

"- - i ( I IT 1 ,
F3 i 1 t J"

F- SE. 2 ( 2 7 0 0
gi -.i pt( "[ .1 ,

S-J. 1 ] 1(1! hU1

PROBABILITI ;OR A CORRECT DECISION 4S6

PERCENT UNKNOWN 10X

F , 0 , . I I f:; T C I ID A W*

r-.1.02 F--i F-16 F- I'. A -I F I11 III
F -I t 2 1 n 0
F --I. 4 4 ;1 1( 2 V

1 .,', - 3 0"
- S :. , '.,i 1.o: 0F0

F- I I A r)U 0I 0.

PROBABPL:y " OP A C, RECT DEISION 6C,

PERCENT UNKNOWN "t r



from the edge detected image. By comparing these results in Figure 51 to

those of Figure 48 obtained for the invariants that were normalized by the

radius of gyration, an average improvement is seen in classification perform-

ance of the order of 30 percent. Using the 33 invariants obtained from the

image without any normalization an optimum transformation matrix H was

computed as described in section 5. 4 and the 33 dimensional vector of the

invariants was projected into a 5 dimensional subspace. The resulting

5 dimensional feature vector was used to classify the five RATSCAT targets

using the Gaussian classifier. The results are given in Table 13. From this

table, classification performance is seen to be 86 percent for nose aspects

and 75 percent for tail aspects, for the 1 meter resolution plan view images,

As seen in the figures and tables tabulating the classification perform-

ance for the invariant moment functions, the best results for the kth nearest

neighbor tests are of the order of 51 percent to 80 percent correct shown in

Figure 51. Comparing these results with those corresponding to classificatiun

usin2 the moments (Fiuure 34), the central moments give on an averace

10 percent better results. The same trend favoring the feature vector from

the moments over that )f the invariants is observed by comparing the results

Obtained using the feature vector formed by the best 18 invariants from the

imace and the corresponding feature vector formed using moments. By

comraring the results in Table 11 with those of Table 3, the ierfurmance

is about the same for both features for nose aspects but for all other asoects

the feature vector usina the central moments Itves 10 to 15 percent better

results. Thus the tests show that the moments perform much better than the

.nvar Lants

3 CLASSIFICATION RESULTS USING GENERAL ALGEBRAIC INVA\RIANT
MOM'[ENT FUNCTIONS

In jur dis cussiuri 4 invarLant nmment funct,ons a set of relatw 1s

atiunc the noments of an imace that are invarant wvith res nect to ,eneral

&. .ruLnate trans,)rmat,)ns .\ere presented in Equatuns 32 throuuh 3,5.

: .'t'So i nct oIIS )f the Zm1onte nts are ,nvariant %v Lth respc Ct t. o ,th r)tat-.)s

an-, nn n.,,rn: scale 4hanuos of the coorr-inatcs thus the are :)artCular-

ar -,us - a



suitable for the recognition of inverse SAR images where the cross range

scale may not be known accurately. For the classification tests using these

general algebraic invariants, only the three general invariants obtained by

Hu [7) and repeated in Equations 32 through 35 were used. With these

formulas, three general invariants from the image and three from the edge

detected image were computed and used to form a six-dimensional feature

vector. This feature vector was then used to classify the plan view images

obtained from the RATSCAT targets and the results for the I meter resolu-

tion images are presented in Table 14. As seen in this table the performance

of this feature vector is poor (46 to b2 percent correct). The main reason

for this poor performance is probably the low dimensionality of the feature

vector. In an attempt to improve the performance of the above features

without deriving new formulas to compute higher order general invariants, the

dimensionality of the feature vector was increased from o to 27 by including

the squares and by two products of the components of the original b dimensional

feature vector. Then as described in Section 5.4, a transformation matrix

was obtained to reduce the dimensionality of this new 27 dimensional feature

vector down to 5. The Gaussian classifier was then trained and tested ustng

this 5 dimensional feature vector and the results are tabulated in Table 15.

The results are still not too good (66 to 71 percent correct), although there

is somne improvement over the results of Table 14 for all aspects.

r.4 CLASSIFICATION RESULTS USING RANGE AND CROSS RANGE
COLLAPSING

As described in Section IV, the target orientation in the image olane

•.6 estimated usinu Equation (39) and the co-ordinate axes are rotated so

that thc v-axis (range) lines up with the fuselage. The -ntensitv distrtbution

, the ':naie is then averaged along the x and v axes to oroduce averaue

-a,-s and '-axis intenit', ;jrof Lies. A feature vector ts then comouted usn,-

ti-.,2 rrelatitun cueffic'.ents for each of these two :orofiles as shown tn F'i,-

ori, 2!,. r.sing the I neter resolution inages, the first 15 corretatihn

C ",:j e, nts .-ere c n-,:uted frjni the x-axis and the v-ax s intensity orjlles.

n the .\i-,alanuhts distance criterwnr, the correlation coeuficients ,ere

10



TABLE 13. CLASSIFICATION RESULTS for 450 SECrORS FO, A
FEATURE VECTOR OBTAINED BY PROJECTING INTO A 5-DINIENSION:\L
SUBSPACE THE 33 ELEMENT INVARIANT FUNCTIONS VECTOR ©0t'OAINED1
FROM THE IMAGE INTENSITY DISTRIBUTION.
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TABLE 14. CLASSIFICATI1O. RES'UL rS FOR SIX GENERAL ALGEBRAIC
INVARIANI[S ( FROM INIAUL1 AND iFROM1 [HE EDGE DEFI'C [ED IMAGE1)
USING MHE GAUSSIAN CL71ASSIVIE'R (NO UNKNOWN)

T( 01t1 1 7 1

FI Ii

T- P, VC1.

f7

PKMBLIT FO A JUWRECT DLEZ3I!N 46
P'LRCE-NT UNKNOWN CJ%

oR3I,'AMLj7 POR A CORREC DEiC~IO' N 46,71
KC:rEu UJNKINOUN ct

I C) 1-



TABLE 15. CLASSIFICATION RESULTS FOR A FEATURE VEC fOR
CONIPUFE'D BY INCLUDINC; I1L1E SQU-ARE\S AND 1BY FWO PPODUC I'S
OF' THE SIX CELNERZAL INVARIAN IiS (3 FROM IMAGE AND 3 FRZOX
[EDGEJL DE FEC f ED IMAGE.) AND IIEN PROJEC rING Ilil: MSUL I'INc;
27 DIMIENSIONAL \'EC 17ORS ON fO A i-DIMENSIONAL PICA PrET
VEC roil

1: D! N Tli-l f: 1

I ?ROMBILITY 7OR A CORRECT DEC:SION 11Z
".RCENT !JMKNOWN 0Z

-1"1 T 1:r~ 1 ,

It:.
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ranked and the resulting ordering for the best 24 was found to be:

R (1), R (2), Rxl1), Rx(2), R (3), Rx(3),

Rx(4), R x(5), R y(14), R y(13), Ry (7). R y(12),

R y(4), R (9), ay (8), R x(15), R y(14), R x(13),

R (10), R (8) R (b), R (12), R (7), R (9)
x x x x x

where y ts the co-ordinate along the fuselage and x is the co-ordinate parallel

to the wings. The classification performance of a feature vector using all

30 correlation coefficients was tested using the kth nearest neighbor rule

and the results are presented in Figure 52 The classification performance

for the best 24 correlation coefficients and the best 1I was also tested and

the results of the order of 70 to 88 percent correct. These are comparable

to many of the results obtained using the central moments but are about

10 percent below the best perfornance results obtained using the best 24

monnts (best 1Z from image and best 12 from edge detected image).

100-
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Figure 52. Classification performance using Kth nearest neighbor
tA for 30 correlation coefficients from collapsed images.
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Figure 53. Classification performance using Kth nearest neighbor

with best 24 Correlation coefficients from collapsed
images.

00-

3 1 24% .0
x UNKNOWN UNKNOWN U N KNOWN UNKNOWN

U

4)o 10'3 0

ASPECT ANCLE- DEl-REES

F qurQI 54 CIdSSIf cal on per foFr~k aneUSiq Ktlt oeatest -ieihbot

vth tbesi 12 Cot rFIatrj cet cnt from collaosed
macles.



Section VII
CONCLUSIONS

Summarizing the results presented in Section VI, it can be observed

that in general the best performance results were obtained using feature

vectors constructed from the moments of the image and the edge detected

image. For the plan view images of the six aircraft targets (F-102, YF-Io,

F-15, F-5E, A-10 and F-Ill, the performance results for a 24-element

feature vector constructed using 12 best moments from the image and 12 bt-st

moments from the edge detected image are in the range of 84 to 96 percent as

seen in Figure 39 which is repeated here in Figure 55. Using the dimen-

sionalitv reduction procedure described in Subsection 5.4, a 5-elenent feature

4j
to% too0% - 96.7% 9.5.1%

096.0% 94% 94.3%

90%0

84%

0%31% 14% 15% 30% 30% 30%

UNKN UNKN UNKN UNKN UNKN UNKN UNKN

(K-.6) (K-6) (K-6 (K-8) K-11) (K-U) (K-6)

0 00
00 450 90' 1350 180 060 120 ISO

ASPECT ANGLE

Fgure 55. Kth nearest neighbor classification results (rm resolution plan views 6 classes) for 24 moments (12

best from image and 12 best from edge detected image) normalized by their standard deviations

with provision for unknown.
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vector was constructed by projecting into a 5-dimensional subspace the 33

element moment vector obtained from the image intensity. The classification

performance of this feature vector was tested using the 1-meter resolution

plan view images of the five RATSCAT targets and the results are shown in

Table 16. In general as shown in the results in Section VI, the best

classification performance obtained using the invariant functions was about

10 to 15 percent below the best results obtained using the moments. In

general the tests showed that moments from the image did better than morrients

from the edge detected image, but feature vectors using combinations between

the two sets had a high classification performance.

The observed classification results with feature vectors obtained by

averaging the image intensity along two orti ogonal axes (parallel and normal

to tie fuselage) and then computing the autocorrelation function was 70 to

88 percent which is 10 percent less than the results obtained using the central

moments. Since the computational requirements for the construction of

this feature vector are considerably smaller than the computational require-

ments for obtaining the geometric moments and invariants, this feature

vector may prove useful in cases where classification accuracies of the

order of 70 to 88 percent are sufficient.

rn general, the results from the p o.rformance tests conducted during

this study are encouraging3 and suggest that the geometric mnoment.s m-av orove

to be important features for the application of statistical pattern rt.cugnition

technique. to the identification of aircraft targets from radar iniaucs. Hlow-

eve'( r, beecau :-e a linited set of imaginQ e onletries (onl plan vlewvs Cor-

r, snonrdin to tproij ctions on the horizontal plane for zero roll and profil,.

corresoonrline to projections on the vertical plane) was used in this study t e

:k,.r,'.i'manc, of the tchniqutes as a function of roll and pitch anlles \as !A,

.esti,_,at,,. ,:r'the 'mor-,, it was as., nuIn e( that the imlaulle plant w, s nw% 1, .

tt-mnn0:itton f: ti tart view presenti i)%' tile inla,, iS an im1portanl

• )l' i}I) tilat nltr.s to )e *O lv,' before the abo,e r-co-nition techniqlio, can
) ,, :n :a ct p l. lx,. ,m~i) ('r\.st, flt) . This OrJ bln, xiil Oe, a,:,Jr ...enr

:2: 1.°'

1*



TABLE l. CLASSIFICATION RESULTS FOR 450 SECTORS FOR A FEATURE
VECTOR OBTAINED BY PROJECTING INTO A 5-DIMENSIONAL SUBSPACE
THE 33 ELEMENT MOMENT VECTOR OBTAINED FROM THE IMAGE
INTENSITY DISTRIBUTION.
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APPENDIX A

ORTHOGONAL MOMENT IN VARIANTS

by Jon P Belleville



A.1. INTRODUCTION

One of the more difficult problems in the design of a system to

recognize objects from their images is the selection of a set of appropriate

numerical features to be extracted from the shape of interest for purposes

of classification. Such a set of features that has been successfully applied

to the recognition of optical pictures is a set of invariant moment func-

tions [], [2], [3],. %hich are discussed in this appendix.

A.2. MOMENTS

The two-dimensional (p4q)th order moments of an intensity distribu-

tion function f(x, v) are defined by

f21 '
n pq j xp yq f(x, v) dxdv , p,q=0,1, 2 ,.

It is assumed that t(x, y) is a piecewise continuous and therefore bounded

function, and that it can have nonzero values only in the finite oart of the

xv plane: then moments of all orders exi..t and the followin- uniqueness

theorem can be proved. Theorem: the double moment sequence npq is

uninuelv determined by f(x, yl; and conversely, f(x, y) is uniuely determine!

5,v I . It should be noted that the finiteness assumption is important:pq
,)therwise the theorem might not hold. It can be shown that this theorem

holds in the discrete case as well. In the discrete case the ;p1-q)th order

m'Orents of an NxXl rectangular imaze field f(x., Y.) are defined bv
1 *1

N N

n 3 3 fxi, v .( . q
pq1 •'

' he e Ix, 'r a'e the c, rd inat. n a th' (i, cell nd Ia x., v , is the IIIa'-
1 A

\- 1

" t1



The central moments for the same rectangular image field are

defined by

N NMN (xxi 5Z{x - ) p ( y .j - )
q  (A -1

pq i=l j=l

where:
nl
n 10

no 0

no
- 1 01

and V -

no0

The normalized central moments are defined by

m
-Pq A-2

pq m0 0

and are invariant , ith respect to chanm.es in the image intensity. In what

follows, by moments e refer to these normalized central moments.

To see that the normalized moments are invariant with respect to

chanzes in image intensitv let z(x. v; - c. f(x, v, \%here c i:- soine non-/.ero

constant. Then Lettinl the priied moments be those computed :rom x. v):

N M
pn = 37 %- x. -x)p (v. tq

i-1 j=l j

which can be rewritten as:

n - • t i  -I . x P v - c

-1 i-I



Thus mpq c mpq, and from Equation (2 -2

I
nm C 11"1pq

pq t cm 0 0  pq

\vhich demonstrates that the normalized rroments are invariant with respect

to uniform changes in intensity. Also that the central moments and normal-

ized central monents are invariant with respect to translations, as seen by

examining Equation (A-1).

A. 3 ALGEBRAIC FORMS AND INVARIANTS

A. 3. 1 Definitions

The set of moments developed above are invariant under translations

and image intensity changes. However, since images may have any orienta-

tion in the image plane a set of f atures which remains constant under

rotation of the image is desirable. Such a set has been developed by Hu[1]

and is presented below.

First, some definitions and results \will be staied. The foilowinmz

homogeneous polynomial of two variables u and v,

a .0 1) a p -1  _- -
f- - a 1  1 u v () a u p -

p - a1  p- P " - a p ,(A-

s calledi a binary ak,ebraic form, or simiptl- a 'binarv oofm ot ,rdtr T.

Esi,,- a .(taLiun. introduced . Catloy, the above form may K. ', ritten [lI]

f - a ; a P 1 , a II :\pp0 pl-I, 1; 00 o

-"~



A hon oigeneous polynomial 1(a) of the coefficients a . a is an alc -po ()p
braic invariant of \eight \%, [1] if

I(a , a- I (ap ... , aop ,
poop p0, op

where a ... a' are the new coefficients obtained from substitutingpo, opi
the following general linear transformation into the original forn (A-3).

[u] .[o, y][u] Ar a a (A-4)

If w - 0, the invariant is called an absolute invariant: ir w r 0 it is called a

relative invariant.

In the stud\- of invariants, it is helpful to introduce another pair of

variables x and x, whose transformation with respect to (A-4) is as follows:

= (A -5)

Flie transformation (A-5) is referred to as a cogredient transformation, and

(A-4) is referred to as a contragredint transformation. Fhe variables x, v

are refe rred to as cova riant variables, and u, v as contrava riant \a riables.

F hp v satisfy lhe follow inQ inv-ariant relation

Ux V u x v V V

' a T-he,,rem ,, .foipeit i:ivariants ,bbtain d( l)v ilu [1 - tatei

If 'he aloibrai, forni of ordr has an alLc ,.rai, in\ariani,

Ila , .... a' l a. ...... a

A -4



then the moments of order p have the same invariant but

with the additional factor J I

(W po . .. p op -IJI AW ... . op)

where 1.1 is the absolute value of the Jacobian

of the transformation (A-5).

A. .2 Orthogonal Moment Invariants

In what follows Hu's [1] derivation of the orthogonal monlent

invariant functions is summarized. Two coordinate systems (x, v) and

(,', vl) rotated relative to each other by an anticle 0 are used. The t\\.(

syvstens are related by tile orthooonal matrix transfornation

Ex1 [o::e sine iFx
-sine os e V

\% hose Jacobian is

Cos @ sin 0

-sin Cos e

;inc . I , the nioneit invariants are exactly tile san-e as the alzeb raic

inva riarats. If the moments are treated as the coefficients of an alg ibhraic

fornm

csill a c -)s j[".

A 

A
[oLI:



then the moment invariants can be derived by the foLlowing algebraic nwthud.

If both u, v and u' %- are subjected to the transft)rnation:

IN' 2[1 i l v V< v4 L A?

then the orthogonal transformation is converted into the following simple

relations,

S , e(A-)

Substituting (A-7) and (A-8) into (A-6), yields the following identities:

(Ipo ... Op ) P (po' o p

po . . . op "  , -)P

---IT, Mr Ji' '0 v i0)p IA-9)
po' "'" OP

whe re I .... I and I o ... I' are the corresponding coefficients
po Op po Op

after the substitutions. From the identity in I and V, the coefficients of

the various uonomiials .p-rr on the two sides nmust be the sallie.

F he refo re,

S -I D i p -2

Pp p- 1  p-. 1 ... :

-i(p- 2 10 e e ipo
I Iip I

IiI - -I ~ :  op op

S• 
r

p-r, r p-r, r

, e rp , r p

A\&,



From the identity of the first two expressions in (A-9), it follows that

I is the complex conjugate of I, p-r.p-r, r pr

A general expression for I in terms of the moments may be
p-r, r

written as follows:

I = ( ;
p-r, r p' p-2,2; . . p-2r, 2 r) ( 1 )

(Ptp-1, 1; /Ap-3, 3; "' p-2r-1, 2r-1-1 (M , I r "

(pr,p-2r;, W2r2,p 2r 2 A. ; op )(1, 1)r  (1, -i)p -
2 r ,

where i = - and p- 2 r >0.

and

p (, p/2 4po ) (-2,P2 2  -4,4  op

p = even.

It ma% be noted that these (p-1 [ 's form a linearly independent set of linear

tra~isft rmatin s of the j.'s, and vice versa. This can be rewritten in im1111 -

tion iitatimi as Collmks:

p-r, p (. 0 E 2r) ( p-2k-n, 2k-n (A-1 I

r r I1 _ _

r -- 4



Separating into real and complex parts we get

p-2rr

p-r~r E n-k-n 2ktn

n=o, 24 k
n=even

pp2r (r) p-2k-n. 2k-n

1, 3, _ I =
n=odd

(A-I 2)

if (0)4 1 and empty sums equal zero then equations (A-li) and (A-12) art:

valid for p- 2 r > 0.

Referring back to equation (A-10) it can be seen that if the I's are

combined in such a rnanner as to elininate the 0 (ependence, invariants arc

formed with respect to rotation. For example for p- 5  and r2 I 3)I is

such an invariant. This can be seen by simply ap 1)lyin,, equation iA- 10).

i(r -4)60 i( - E)
132 2 3  

= e 4 32 • e 123

32 123

?urtherrnore, since the moments are invariant withi respect to translation

-iA(1 ,han4,s in intoeisitv th invariants fornwmed tr,m the I's also have te,,s,.

r t i ' s .

A ctnlplete S' trn o ot L)rlho nal niom ti iivariaiit- rij,\vetlue)rw i 1)%

'or the second-order ni nie nt s he t.o imd pf-ndent invarianws at,

IK i" I2(0 102

4j
.\ - -.



For the third-order moments the three independent invariants are

130 103' 21 112 (A-13)

3 3
30112 03121

A fourth one depending also on the third-order moments is

1 3 3
T (130112 - 03 21 (A-14)

The first three given by (A-13) are absolute invariants for both proper and

improper rotations but the last one given by(A-14) is invariant only under

proper':, rotation, and chano es sion under improper:'- rotation. This %%ill be

called a skew invariant. Therefore it is useful for distinguishing "mirror

images." One more independent absolute invariant may be formed from

second and third order moments as follows:

H 12 1 1220 12 02 21

For pth order moments, p - 4 we have [1)12] Ithe integral part of p, 2 )

invariants

1p 1o:1I I I I :. .

po op p-l, I l,p- I'" ' p-r, r r,p-r

If p is evn, tlhen

2 s also an invariant.

.\ i: l) le ritti(,fl t cOrrdinat s . 1 i. i ' . . a plr 'p r rotatti,): . -hi ;
',t l,.c ii, dl-,t nt i thio rinr,, '.- til\Ei ;V 'toiw i s th'iintrj

.t- - :l !:?!)rFT~t~ :',latt )a-



Combining the pth order moments wvith the (p-2) order moments a set o1

[p/2-1] invariants are obtained given by

PI 1, 1 i0 -2 11, I IP 2

p2, 2 1,'p- 3  ,P 2 p-3,l1)'

~P- r, r r- 1, P-r-1 r,- 'p- r~ 1 p(r- - 2 r > 0, r ? I. iA-1 -1)

Also bv combining the pth order moments with second-order moments, twn)

additional invariants are obtained

[p/12], lp/2] 1 0 p/2] 1, 12J 102

if I) is odd, and

if p is even. The refore there are always p- I )inidependent absolUte'

ivariants.

The invariants thus far dt-eetued are invariant xith respect t(. t ran. -

Ia h on c hani, e s in inte ns itv. rotation and re fiec ti Ln.l eX the v are, ;1b)

i!-varjant \with respect to scale chianges. To adjust for SL-ale chian,_es ,akh

invar~aiit is divided ow a factor of r kas donei tA% rudii 21. Tric scali~i

I Ir is defined as

r

'1i Iis itself ani invariant inarnplv 1I 1 also know-n as Ili- radius of 2,. rationi

of the lilzure. !,e Value of kc depends uIpon the order -)I the# i f Iqr

h fe inva r Ia n ts.

A - i . -- -



The values of k are as follows:

k = 2 p for invariants of the form: I I rp
p-r, r r, p-r

k = p for invariants of the form: 'p/2,p/2

k p-q-n(r--s) for invariants of the form: I p n r -+ srpq rs qp Sr

This completes the development of orthogonal moment invariants.

Hu [1] also developed a set of moment functions which is invariant under

,,eneral nonsinoular algebraic transformations. This set is briefly dis-

cussed in Section ; of this report.

A. 4 PROGRAMMING CONSIDERATTONS

Basically, the algorithm to compute the invariants will be a straight

line program; the Vs are computed first and then combined to form invariants.

Hlowever, there are a couple of points where the program may be optimized.

First, not all the I's need to be computed since I is thet com1plexr, p- r

coniu!ate of I . Second, the calculation of I as per equa-!p-r, r p-r,r

tion (A-II I or IA-l2) may be optimized by the use of a recursive

procedure for computing (im).

For instance, if (i) is known for some value of m and n and we wish

to compute (assume that o !5 n <- m-1). By expanding (n and (n)

then

~m,
(m-n)! n'

n I I Im n - (n In - !

n -I I In -n n In

A- I

1'

"- "" , .t,, ,u, / , ,-.



Thus, the recursion relation is

(m7) = m- (mQ)
n-il (n+l) n

A. 4. 1 Program Verification

A program to compute the orthogonal moment invariants up to order

seven using the results contained in this appendix is presented in a summary

flowv chart in Figure B-4 in Appendix B.

To check that the invariants computed are actually invariant with

respect to rotation, a simple figure was used and the invariants calculated.

The figure used is shown in Figure A-I. The invariants that %\ere

calculated are listed in Table A-I. Record I contains the invariants for the

oriuinal irnaie and Record 2 are those for the rotated imai-,e. The t\\,() re ) rd .

are identical. Because the test figure is a straight Line which is (ori,-inallv

parallel to the x-axis all rnonients 4p with cj>0 are zero,. This resuilts inpq
many of the invariants reducing to the same numerical value and explain.-

this occurrence .n Table A-I.

The invariants in Table A-1 are numbered as follo\.s. (The

,nornali,,ation by 1 1 is not shownl

Pl =  120 102

p, throu<,_h p 1 have the form:

lI

her • ..... 7. and n fl, 1 p / 2]. a,, r x] indifcates Ih.

I:,, r i 3 1n j. rt 0 F, r the c: se . hen j is eve p . , i u.-- i *t,-.

D .-....

'-, r, ia t i:i,- i v a r.,in t - - a , Hr t ra,1 l 1 a1. ,, a ,l ,
1V -1

w 12 1 '3 12 )

S i A12 - I )

- "> I i )2 -

.' -1



p +1 II
21 = 131 102 13 20

P22 = 141 103 + 14 30

P23 = 132 12 + 123 121

P24 = 51 04 15 40

P2 5 = 142 113 + 124 131

P 2 6 = 17 0 105 + 117 150

P2 . I I I
27 52 14 25 41

P2 143 123 34 32

9 104120 140 02

2
~30 123 20 32 02

P31 124 120 142 102

3 2  134 -0 14o 3 02

A- I



Y

3 7

I I I I I I X-AXIS

a. Test figure

y

S870

I I X-A (IS

b. Rotated figure
THE NUMBERS By EACH POINT REPRESENT THE

RE LATIVE BRIGHTNESS Ar THAT POINT

Figure A 1
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TABLE A-I. INVARIANTS BEFORE AND AFTER ROTATION

Record I Record 2
(Original) (Rotated)

n p ', p 9

1 1.00 1,00

2 0.248 0.248

3 0.248 0.248 4

4 3.37 3.37

5 3.37 3.37 4

6 1.84 1.84

4.09 4.09

8 4.09 4.09

9 4.09 4.09

10 18.1 18.1

11 18.1 18.1

12 18.1 18.1

13 4.25 4.25

14 37.1 37. 1

15 37. 1 37.1

16 37.1 37. 1

17 37.1 37.1

18 0.123 0. 123

19 0.0 2.29 . 10 O. 0

20 0. 495 0. 4')5

21 3.67 3.,-7

22 2.01 2.01

23 2.01 2.01

24 15.o 15.r

25 15.6 1;.

24.6 24.6

27 24. 2 4.,

24.,,)24. ')

3. ) 7 3.')7

31 ' M. I1

,2 -4. 7-4.2

A -15

_________________________
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APPENDIX B

DESCRIPTION OF COMPUTER PROGRAMS USED

FOR THE CLASSIFICATION TESTS

by Charles P. Dolan
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B. IINTRODUCTION

In designin- the software for- this study, an effort was madc to

modularize the routines and use a uniform input output format for all the

program-s. Thus the samne training, and classification r-outines could be

emploved for all feature vectors used in the study. Also cornmovnality among

the routines for computing the moments and invariants allowed efficient

programi design. The flowcharts and block dia~rarns in thi~s appendix sum-

marize the computer pI-ograms needed for the computation of the mnoments

and invariants, the normalization of the moments by their standard devia -

tion over all targets and aspects, the nea rest neighbor and Gaussian classi-

fiers and the feature selection.

....... ...
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Figure B-4. Summary flow chart of computer program for computation
orthogonal moment invariants
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SORT FEATURE VECTORS FOR ALL TARGETS
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MAXIMUM VARIANCE

STORE ON DISC SORTED FEATURE VECTORS

Figure B.5. Training kth nearest neighbor classifier
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TAPE RECORD

FEATURE VECTOR

2 36 TARGET TARGET
1o ASPECT .0.

TARGET

..0.
FEATURE SELECTION O kTH NEAREST

TARGET ASPECT SECTOR

TRAINING VECTORS PER V
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Figure 3-7. Classification tests using kth nearest neighbor classifier
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Figure B-10. Flowchart fork nearest neighbor classifier (continued)
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TAPE RECORD FORMAT

FEATURE VECTOR

TARGET TARGET
TAK~E 1 ~2 V;j ASPECT 1. 0.

FEATURE
SELECTION

STORE ON DISC

COMPUTATION OF MEANS AND
CLASS MEANS AND COVARIANCES FOR

1- EACH TARGET ANDCOVAR lANCES ASPECT ANGLE

Figure B-il1. Training Gaussian classifier
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TAPE RECORD FORMAT

I TARGET TARGET 4
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FEATURE SELECTOR GAUSSIAN
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Figure B-13. Classification tests using the Gaussian classifier
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